


LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor N.J. Hitchin, Mathematical Institute, University of Oxford, 24-29 St Giles,
Oxford OXI 3LB, United Kingdom

The titles below are available from booksellers, or from Cambridge University Press at
www.cambridge.org/mathematics

214 Generalised Euler-Jacobi inversion formula and asymptotics beyond all orders,
V. KOWALENKO et al

215 Number theory 1992–93, S. DAVID (ed)
216 Stochastic partial differential equations, A. ETHERIDGE (ed)
217 Quadratic forms with applications to algebraic geometry and topology, A. PFISTER
218 Surveys in combinatorics, 1995, P. ROWLINSON (ed)
220 Algebraic set theory, A. JOYAL & I. MOERDIJK
221 Harmonic approximation., S.J. GARDINER
222 Advances in linear logic, J.-Y. GIRARD, Y. LAFONT & L. REGNIER (eds)
223 Analytic semigroups and semilinear initial boundary value problems, KAZUAKI TAIRA
224 Computability, enumerability, unsolvability, S.B. COOPER, T.A. SLAMAN &

S.S. WAINER (eds)
225 A mathematical introduction to string theory, S. ALBEVERIO, et al
226 Novikov conjectures, index theorems and rigidity I, S. FERRY, A. RANICKI &

J. ROSENBERG (eds)
227 Novikov conjectures, index theorems and rigidity II, S. FERRY, A. RANICKI &

J. ROSENBERG (eds)
228 Ergodic theory of Zd actions, M. POLLICOTT & K. SCHMIDT (eds)
229 Ergodicity for infinite dimensional systems, G. DA PRATO & J. ZABCZYK
230 Prolegomena to a middlebrow arithmetic of curves of genus 2, J.W.S. CASSELS & E.V. FLYNN
231 Semigroup theory and its applications, K.H. HOFMANN & M.W. MISLOVE (eds)
232 The descriptive set theory of Polish group actions, H. BECKER & A.S. KECHRIS
233 Finite fields and applications, S. COHEN & H. NIEDERREITER (eds)
234 Introduction to subfactors, V. JONES & V.S. SUNDER
235 Number theory 1993–94, S. DAVID (ed)
236 The James forest, H. FETTER & B. G. DE BUEN
237 Sieve methods, exponential sums, and their applications in number theory,

G.R.H. GREAVES et al
238 Representation theory and algebraic geometry, A. MARTSINKOVSKY & G. TODOROV (eds)
240 Stable groups, F.O. WAGNER
241 Surveys in combinatorics, 1997, R.A. BAILEY (ed)
242 Geometric Galois actions I, L. SCHNEPS & P. LOCHAK (eds)
243 Geometric Galois actions II, L. SCHNEPS & P. LOCHAK (eds)
244 Model theory of groups and automorphism groups, D. EVANS (ed)
245 Geometry, combinatorial designs and related structures, J.W.P. HIRSCHFELD et al
246 p-Automorphisms of finite p-groups, E.I. KHUKHRO
247 Analytic number theory, Y. MOTOHASHI (ed)
248 Tame topology and o-minimal structures, L. VAN DEN DRIES
249 The atlas of finite groups: ten years on, R. CURTIS & R. WILSON (eds)
250 Characters and blocks of finite groups, G. NAVARRO
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Introduction

J. B. Conrey, D. W. Farmer, F. Mezzadri and N. C. Snaith

The group of rational points on an elliptic curve is a fascinating number
theoretic object. The description of this group, as enunciated by Birch and
Swinnerton-Dyer in terms of the special value of the associated L-function, or
a derivative of some order, at the center of the critical strip, is surely one of
the most beautiful relationships in all of mathematics; and it’s understanding
also carries a $1 million dollar reward!

Random Matrix Theory (RMT) has recently been revealed to be an excep-
tionally powerful tool for expressing the finer structure of the value-distribution
of L-functions. Initially developed in great detail by physicists interested in the
statistical properties of energy levels of atomic nuclei, RMT has proven to be
capable of describing many complex phenomena, including average behavior
of L-functions.

The purpose of this volume is to expose how RMT can be used to describe
the statistics of some exotic phenomena such as the frequency of rank two
elliptic curves. Many, but not all, of the papers here have origins in a workshop
that took place at the Isaac Newton Institute in February of 2004 entitled
“Clay Mathematics Institute Special week on Ranks of Elliptic Curves and
Random Matrix Theory.” The workshop began with the Spittalsfield day
of expository lectures, highlighted by reminiscences by Bryan Birch and Sir
Peter Swinnerton-Dyer on the development of their conjecture. The week
continued with a somewhat free-form workshop featuring discussion sessions,
groups working on various problems, and spontaneous lectures. The idea for
this volume arose at this workshop. The intention is to gather together a
number of articles to assist someone wishing to begin work in this area.

One of the hightlights of this volume is the collection of beautiful expository
papers and surveys: Kowalski’s introduction to elliptic curves, Silverberg on
ranks of elliptic curves, Ulmer’s discussion of zeta-functions over function fields,
Gamburd’s explanation of symmetric function theory, Rodriguez-Villegas on
the theta series associated with special values, Delaunay on probabilistic group
theory, Farmer on families, and Young on exotic families of elliptic curves.
There are an amazingly rich variety of topics arising from this one focus.

The most important invariant of an elliptic curve is the rank of its (Mordell-
Weil) group of rational points; it is a non-negative integer, believed to be
0 or 1 for almost all elliptic curves. The catalyst for the Newton Institute
workshop was a conjecture (see [CKRS]) about how often the rank is 2 for
the family of quadratic twists of a given elliptic curve. Each elliptic curve
has an L-function associated with it; this is an entire function which satisfies
a functional equation. The Birch and Swinnerton-Dyer conjecture asserts,



2 J. B. Conrey, D. W. Farmer, F. Mezzadri, and N. C. Snaith

among other things, that the order of vanishing at the central point of the L-
function associated with an elliptic curve is equal to the rank. It is generally
conjectured that almost all elliptic curves have rank zero or one according to
whether the sign of the functional equation of the related L-function is +1 or
−1. Rank two curves should occur with L-functions that have a +1 sign of
their functional equation but vanish nevertheless at the central point. These
are expected to be rare; the question of how rare is the subject here.

If the elliptic curve is given by E : y2 = x3 + Ax + B, and if d is a
fundamental discriminant, then the quadratic twist of E by d is the elliptic
curve Ed := dy2 = x3 + Ax + B. The conjecture, derived from RMT and
number theory, is that Ed will have rank 2 for asymptotically cEx3/4(log x)bE

values of d with |d| ≤ x. Here bE is one of four values described in the article
by Delaunay and Watkins, whereas cE is yet to be determined but depends on
a mix of RMT, number theory, and probabilistic group theory (see the article
of Delaunay on class groups and Tate-Shafarevich groups).

This conjecture, while interesting, is not as compelling as it might be be-
cause of our ignorance of cE. However, an absolutely convincing case for RMT
can be given by considering rank 2 curves as above but divided into arithmetic
progressions of d modulo some prime p.

Using RMT arguments combined with a number theoretic discretization of
the problem, one is led to predict that if a is a quadratic residue mod p and b
is a quadratic non-residue then the ratio of rank 2 twists among d ≡ a mod p
to d ≡ b mod p is, in the limit,

√
p + 1 − ap

p + 1 + ap

,

where L(s) =
∑∞

n=1 ann
−s is the L-function associated with E. Those familiar

with the conjecture of Birch and Swinnerton-Dyer might not be surprised to
see the ratio

p + 1 − ap

p + 1 + ap

show up; however, it is the square-root, contributed by RMT, that is the
surprise.

The basic calculation to obtain this result involves a ratio of conjectures
for ∑

d≡a mod p
d≤x

LEd
(1/2)−1/2;

the reason that one takes the -1/2 power here is due to the rightmost pole at
s = −1/2 of the s’th moment of characteristic polynomials of matrices chosen
randomly from SO(2N) with respect to Haar measure. The description of this
calculation and the compelling numerical evidence is in the paper [CKRS].
In this volume, the calculation is taken a step further in the paper of Con-
rey, Rubinstein, and Watkins where lower order terms for the moments are
incorporated and lead to an even more precise evaluation of these ratios.
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The conjectures about quadratic twists can be generalized to cubic twists
in two different ways. One involves the frequency of rank 2 elliptic curves
within the classical family Em := x3 + y3 = m. See the interesting paper of
Watkins to understand why it is precisely twice as likely that a number which
is 2 mod 7 is a sum of two rational cubes compared with a number which is 3
mod 7.

The other way to do a cubic twist is to take a fixed elliptic curve E and a
Dirichlet character χ of order 3 and consider the twisted L-function, LE(s, χ) =∑∞

n=1 anχ(n)n−s. David, Fearnley, and Kisilevsky [DFK] have shown, very
surprisingly, that such twists vanish for about x1/2 cubic twists of modulus
≤ x, and have given precise conjectures, based on RMT, for the asymptotic
frequency of this event. They also consider quintic twists (see their paper
in this volume) and conclude that there are (barely!) infinitely many order
five characters for which the twisted L-function vanishes at the central point.
These predictions are based on calculations with random unitary matrices,
whereas the previously mentioned conjectures arise from considering groups of
orthogonal matrices.

It is interesting to begin with a weight 4 modular newform f , with integer
Fourier coefficients, and similarly ask about vanishing of, say, quadratic twists
of the associated L-function. In this case it is expected that there will be
asymptotically cfx

1/4(log x)bf vanishings at the central point of the quadrati-
cally twisted L-functions . The possible values of bf have not been worked out
here; however, if one restricts to prime discriminants, then the power on the
log is expected to be −5/8 in both this case and the case of twists of elliptic
curve L-functions. If one considers weight 6 or higher, it is expected that there
will only be finitely many vanishings of quadratic twists of the associated L-
functions. It is not clear whether one accumulates infinitely many vanishings
if one considers all such weight 6 forms and all of their twists. There is an
arithmetic significance to the vanishings of the twists of the weight 4 modular
forms: it is related to the rank of an associated Chow group, about which we
hope to say more at a later time.

In the twists mentioned in the cases above we only consider the twists for
which there is a plus sign in the functional equation.

The numerical evidence for many of the above conjectures has been accu-
mulated by a combination of people: Tornaria, Rodriguez-Villegas, Rosson,
Mao, and Rubinstein. Much of it is based on an algorithm of Gross for find-
ing the half-integral weight form, as a theta series involving ternary quadratic
forms, whose Fourier coefficients yield the values of the twisted L-series at the
central point. Prior to the February workshop, only a handful of such theta
series were known. During that workshop, the first four people above worked
out the obstacles to further progress and produced literally thousands of ex-
amples for Rubinstein who computed hundreds of millions of values for each;
this provides a nice data bank for testing conjectures.

Matt Young has considered the situation of the “family of all elliptic
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curves.” Basically he parametrizes this family as EA,B : y2 = x3 +Ax+B and
allows (A,B) to run over a rectangle. He is concerned not only with the dis-
tribution of ranks in this family, but also with statistics such as the ‘one-level
density’ of the zeros. He considers other more exotic families as well, such as
EA,B2 which is forced to have rank at last one. Such families play a role in
Iwaniec’ approach to the Riemann Hypothesis.

All of the above discussion has been focused on rank two. The question of
modelling rank 3 members of a family is much more difficult; in fact it is not
at all satisfactorily addressed. In the case of quadratic twists, to conjecture
the number of rank 2 curves the application of random matrix theory relies on
a discretization arising from the beautiful formula, due in this form to Kohnen
and Zagier:

LEd
(1/2) = κE

cE(|d|)2

√
|d|

,

where cE(|d|) is an integer and κE > 0. In the case of rank 3, we consider
the conjectural formula of Birch and Swinnerton-Dyer for the value of the
derivative of an odd LEd

(s):

L′
Ed

(1/2) =
hEd

|ShaEd
|√

d
,

where hEd
is the height of a generating point. (Change this to the formula

of Gross-Zagier.) The problem is that we don’t know what kind of discretiza-
tion to give hP . It could conceivably be as small as log |d| but statistically
this does not seem to be the correct model. By the work of Snaith (in this
volume), the right-most pole of the derivative of the sth moment of charac-
teristic polynomials of odd orthogonal matrices occurs at s = −3/2. This
might suggest, if one uses the discretization (log |d|)/

√
|d|, that there are only

about x1/4 rank 3 curves among the family of twists with conductor smaller
than x. However, Rubin and Silverberg give examples of E which have many
more rank 3 quadratic twists, suggesting that this discretization is not correct.
In examining the limited data we have for rank 3 twists, an interesting phe-
nomenon seems to appear: it looks as though L′

Ed
(1/2) cannot be as small as

(log |d|)/
√

|d|. Is it possible that when Sha is small then the height of a gener-
ating point is big and vice-versa? This linkage does not seem unnatural if one
compares for example to the situation of the class number of a real quadratic
field. There one finds that the product of the regulator times the size of the
class group is always about the size of the square root of the discriminant.
However, this analogy may not be correct, since this involves L-functions at
the edge of the critical strip whereas we are discussing values at the center.
The paper of Conrey, Rubinstein, Snaith, and Watkins discusses the so-called
‘Saturday night conjecture’ about the possible sizes of this product. Much
more data is needed to make an informed conclusion.

All of the above and more is contained in this volume. Other directions
yet to be considered are odd weight modular forms, Siegel modular forms, and
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Chow groups and we hope this collection of papers will attract new researchers
to this field and inspire those well acquainted with it to explore further.
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Elliptic curves, rank in families and
random matrices

E. Kowalski

This survey paper contains two parts. The first one is a written version
of a lecture given at the “Random Matrix Theory and L-functions” workshop
organized at the Newton Institute in July 2004. This was meant as a very con-
crete and down to earth introduction to elliptic curves with some description
of how random matrices become a tool for the (conjectural) understanding of
the rank of Mordell-Weil groups by means of the Birch and Swinnerton-Dyer
Conjecture; the reader already acquainted with the basics of the theory of el-
liptic curves can certainly skip it. The second part was originally the write-up
of a lecture given for a workshop on the Birch and Swinnerton-Dyer Conjecture
itself, in November 2003 at Princeton University, dealing with what is known
and expected about the variation of the rank in families of elliptic curves. Thus
it is also a natural continuation of the first part. In comparison with the orig-
inal text and in accordance with the focus of the first part, more details about
the input and confirmations of Random Matrix Theory have been added.

Acknowledgments. I would like to thank the organizers of both work-
shops for inviting me to gives these lectures, and H. Helfgott, C. Hall, C.
Delaunay, S. Miller, M. Young and M. Rubinstein for helpful remarks, in par-
ticular for informing me of work in process of publication or in progress that
I was unaware at the time of the talks. In fact, since this paper was written,
a number of other relevant preprints have appeared; among these we men-
tion [Sn], [Mil2], with no claim to exhaustivity!

Notation. We use synonymously the two notations f(x) = O(g(x)) and
f(x) � g(x) for x ∈ X, where X is some set on which both f and g > 0 are
defined; it means that for some “implied” constant C > 0 (which may depend
on further parameters), we have |f(x)| 6 Cg(x) for all x ∈ X. On the other
hand, we use f = o(g) as x → x0, for some limit point x0, to mean that the
limit of f/g exists and is 0 as x → x0, and similarly f ∼ g for x → x0 means
f/g → 1 as x→ x0.

1 A concrete introduction to elliptic curves

Before embarking on our journey, we refer in general to Silverman’s book [AEC]
for a very good and readable discussion of the topics covered here, with com-
plete proofs for all but the most advanced. Each subsection will include ref-
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erences to the parts of this book that corresponds, and other references if
necessary.

1.1 Elliptic curves as algebraic curves, complex tori and
the link between the two

Elliptic curves can be seen in a number of different ways. We will present
the two most geometric. First, an affine plane cubic curve over the field C of
complex numbers is simply the set of complex solutions (x, y) ∈ C×C of an
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1)

(called a general Weierstrass equation), where a1, a2, a3, a4 and a6 are arbi-
trary complex numbers. If all the ai are rational numbers, the curve is said
to be defined over Q. It is those curves which are most relevant for number
theory, and especially one is concerned with the basic diophantine question
which is to find all rational solutions (x, y) ∈ Q×Q to the equation (1.1).

For many reasons, it is usually more convenient to present the equation (1.1)
in homogeneous form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (1.2)

(which defines a projective cubic curve) and look for triplets of solutions
(X,Y, Z) in the projective plane P2(C) instead of the place C2, which means
looking for non-zero solutions (X,Y, Z) 6= (0, 0, 0) and identifying two solutions
(X,Y, Z) and (αX,αY, αZ) for any non-zero α ∈ C×.

If in a triplet (X,Y, Z) satisfying (1.2) we have Z 6= 0, then we can replace
(X,Y, Z) by the equivalent solution (X/Z, Y/Z, 1) and this satisfies (1.2) if and
only if the pair (x, y) = (X/Z, Y/Z) satisfies the original equation (1.1). So
the homogeneous solutions with Z 6= 0 are in one-to-one correspondence with
the points on the affine cubic curve. However, if Z = 0, the equation (1.2)
gives X = 0, so the solutions are (0, Y, 0) with Y 6= 0 arbitrary. All those
are in fact equivalent to a single solution (0, 1, 0), which is called the point at
infinity, often denote∞. Note in particular that this point always has rational
coordinates.

Plane cubic curves provide the first “picture” of elliptic curves, that as
algebraic curves. However, there is a necessary condition imposed on an equa-
tion (1.1) before it is said to be the equation of an elliptic curve, namely it
must define a smooth curve in C×C. This means that the partial derivatives

2y + a1x+ a3 and a1y − 3x2 − 2a2x− a4

must not have a common zero (x, y) which is also a point on the cubic curve.
There is an explicit “numeric” criterion for this to hold (see [AEC, p. 46]); in
the slightly simpler case where a1 = a3 = 0 (we will see that one can reduce to
this case in most situations), the smoothness expresses simply that the cubic
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polynomial x3 +a2x
2 +a4x+a6 has three distinct roots in C, equivalently that

the discriminant ∆ = −16(4a3
4 + 27a2

6) is non-zero. Thus, this will be true for
a “random” equation (1.1).

To summarize this definition: an elliptic curve, as an algebraic curve, is
the set of projective solutions (X,Y, Z) to an equation (1.2) which defines a
smooth curve.

Example 1.1. • The plane cubic curve with equation

y2 = x3

is not an elliptic curve: the point (0, 0) is a singular point (the curve looks like
a “cusp” in the neighborhood of (0, 0)).
• Similarly, the curve with equation

y2 = x3 + x2

is not an elliptic curve; again (0, 0) is singular, and the curve looks like a node
in the neighborhood of (0, 0).
• The curve with equation

y2 = x3 − x = x(x− 1)(x+ 1)

is an elliptic curve, since the right-hand side has three distinct roots in C.
This curve is defined over Q. It is often called the congruent number curve,
for reasons we will explain below; it is also a so-called CM curve, and this
terminology will also be explained.
• Let ` > 2 be a prime number. If (a, b, c) were non-zero rationals such

that a` + b` = c`, then the cubic curve

y2 = x(x− a`)(x+ b`)

would be a very remarkable elliptic curve (defined over Q), in fact so remark-
able that it cannot possibly exist: this is the “highest level” summary of how
Wiles proved Fermat’s Great Theorem.

The other view of elliptic curves is more analytic in flavor, and identifies
them with complex tori. Namely, let ω1, ω2 be non-zero complex numbers,
with ω1/ω2 /∈ R. Let Λ = ω1Z ⊕ ω2Z; this is an abelian subgroup of C, and
it generates C as an R-vector space. Those two properties characterize the
lattices in C, and all of them are given as described.

Now consider the quotient group X = C/Λ which one views as a compact
Riemann surface (it is compact because, for instance the compact set {aω1 +
bω2 | (a, b) ∈ [0, 1]× [0, 1]} projects surjectively to X). Topologically, this is a
torus, and as a group, this is (R/Z)2. Now the analytic definition of an elliptic
curve is simply that it is one such quotient C/Λ for some lattice Λ ⊂ C. We
will now discuss how this definition and that as smooth plane cubic curve are
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compatible. A small warning: although it is tempting to think so at first,
taking ωi with rational coordinates does not give the analogue of cubic curves
defined over Q! In fact, for a curve defined over Q, the ratio ω2/ω1 is almost
always transcendental, see e.g. [Ba, Ch. 6].

It is always natural to look for meromorphic functions defined on a Riemann
surface (for instance, think that on a cubic curve we have two natural rational
functions, (x, y) 7→ x and (x, y) 7→ y which are used to give the equation of the
curve). Very concretely, this means we wish to consider meromorphic functions

f : C→ C

which are ω1 and ω2-periodic:

f(z + ω1) = f(z) and f(z + ω2) = f(z).

Those f are called elliptic functions ; this is where the history began in fact,
since it was found, over a long period, that the arc-length on an ellipse can
be expressed in terms of (inverses of) such functions (see [AEC, 168–170] for
a sequence of exercises explaining this).

Now for a given Λ, one can construct an elliptic function ℘ which has a pole
of order 2 at points of Λ and no other singularities, and satisfies the algebraic
differential equation

℘′2 = 4℘3 − g2℘− g3

for some g2, g3 ∈ C. In fact, this is the Weierstrass ℘-function of Λ which is
given explicitly by the series

℘(z) =
1

z2
+
∑

ω∈Λ
ω 6=0

( 1

(z − ω)2
− 1

ω2

)
,

and g2 and g3 are the absolutely convergent series

g2 = 60
∑

ω∈Λ
ω 6=0

1

ω4
, g3 = 140

∑

ω∈Λ
ω 6=0

1

ω6
.

Sending z 7→ (2℘(z),
√

2℘′(z)) gives points on the plane cubic

y2 = x3 − g2x− 2g3 (1.3)

with 0 7→ ∞ since ℘ has a pole at z = 0. One shows that this map is bijective,
and that this cubic curve is smooth, hence is an elliptic curve “as plane curve”.
Moreover, one shows that all elliptic curves with a1 = a3 = a2 = 0 arise in this
manner, and also that simple changes of variables can bring any Weierstrass
equation (1.2) to the form (1.3).

References: [AEC, III.1,VI]
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1.2 The group law on elliptic curves and maps between
elliptic curves

The quotient C/Λ has a natural abelian group structure. So there must be a
corresponding group structure for the points in the incarnation of the elliptic
curve as a smooth plane cubic curve. This “group law” turns out to have a
very nice geometric description, which is that if P = (x1, y1), Q = (x2, y2),
R = (x3, y3) are distinct points on the curve (i.e. distinct solutions to (1.1)),
then we have P +Q+R = 0 for this group law if and only if P , Q and R are
collinear.

Here is a quick sketch that this does indeed correspond, via the link pre-
sented in the previous section, to the addition on C/Λ: the equation F (x, y) =
0 of the line joining P , Q and R gives an elliptic function f(z) = F (℘(z), ℘′(z))
such that the divisor of f is (p) + (q) + (r)− 3(0) where p, q, r ∈ C/Λ corre-
spond respectively to P , Q, R by the analytic parameterization. (This means
that f has three zeros p, q and r modulo Λ, and a triple pole at 0). By in-
tegrating zf ′/f along the boundary of a fundamental parallelogram, one gets
p+ q + r ∈ Λ.

It is an essential fact that this group law can be expressed by algebraic
formulae: for instance, one finds for y2 = x3 +a4x+a6 that −(x, y) = (x,−y),
and (x1, y1) + (x2, y2) = (x3, y3) with

x3 =
( y2 − y1

x2 − x1

)2

− x1 − x2, (1.4)

y3 =
y2 − y1

x2 − x1

(x3 − x1)− y1 (1.5)

if x1 6= x2. The case x1 = x2 is treated by a limit process (in other words,
replace the line joining the two points by the tangent). It is in fact essential
here to use the projective model (1.2) because the origin for the group law is
the point at infinity.

This algebraic description shows that if the curve is defined over Q, then
the points with rational coordinates on an elliptic curve (those that we wish
to determine as the basic diophantine question) form a subgroup of the group
of complex-valued points.

In addition to considering a single elliptic curve, it is also important to
study maps between elliptic curves (also called morphisms of elliptic curves).
They are most easily described in the analytic description: given two lattices
Λ1 and Λ2 in C, we are looking for holomorphic maps C/Λ1 → C/Λ2. It is
easy to see that there exists complex numbers α and β such that αΛ1 ⊂ Λ2

and f(z) = αz + β for z ∈ C/Λ1.
On the algebraic side, those maps become expressed by polynomials, or

more often rational functions; thus it may be necessary to use two or more
formulas to describe f(x, y), depending on whether a certain expression is
well-defined at (x, y), as we saw already for the case of the group law itself
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(the formula (1.4) is valid only for x1 6= x2). So an algebraic map between two
elliptic curves, seen as algebraic curves, is really a collection of applications
defined by rational functions, one of which at least is valid at any given point
(including at infinity), and which coincide in case there is more than one
possibility. If all those rational functions can be chosen with coefficients in Q,
the map is said to be defined over Q.

Example 1.2. Let E be an elliptic curve (1.2).
• For a fixed point P0 ∈ E, defining f(P ) = P + P0, where + is the group

law defined above, gives a map E → E.
• For any integer n ∈ Z, the application

P 7→ P + · · ·+ P︸ ︷︷ ︸
n

(again with + the group law on E) is a map [n] : E → E. It is defined over
Q if E itself is defined over Q.
• Let a, b be complex numbers with a2 6= 4b. The map

{y2 = x3 + ax2 + bx} → {w2 = v3 − 2av2 + (a2 − 4b)v}
(x, y) 7→ ( y

2

x2 ,
y(b−x)2

x2 )

“is” a map between those two elliptic curves, with (0, 0) 7→ ∞.
• Let E : y2 = x3 − x. Then [i] : (x, y) 7→ (−x, iy) is a map (not defined

over Q, but over Q(i), in an obvious sense).

As in the case of complex tori (and as it should be!), any map E → F
between elliptic curves is of the form f(x) = g(x) + x0 where g is a map that
preserves the group law, i.e. g(P + Q) = g(P ) + g(Q). Such a map is called
an isogeny.

The isogenies from a given curve to itself form a ring End(E), where the
product is composition of maps and the addition is performed pointwise using
the group law: (f + g)(P ) = f(P ) + g(P ). Similarly, if E is defined over Q,
the isogenies defined over Q form a subring EndQ(E) ⊂ End(E) which can be
smaller than End(E), as the fourth example above illustrates.

Usually one has End(E) = Z, where n ∈ Z corresponds to the “multipli-
cation by n” map. This is most easily seen using the analytic description: if
a lattice Λ and α ∈ C satisfy αΛ ⊂ Λ, using a basis (ω1, ω2) of Λ one has for
some integers ni {

(n1 − α)ω1 + n2ω2 = 0

n3ω1 + (n4 − α)ω2 = 0

hence (n1 − α)(n4 − α)− n2n3 = 0, which shows that α is either an integer or
the root of a quadratic polynomial; and by solving the system, if α /∈ Z, one
sees that ω1/ω2 is also a quadratic number, so the lattice is very special.
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If End(E) 6= Z, one says that E has complex multiplication, abbrevi-
ated CM. For instance, the curve y2 = x3 − x above is a CM curve since
the map [i] described in the example is not multiplication by n for any n.

One shows (again, it is obvious in the analytic description) that a non-zero
isogeny E1 → E2 is necessarily surjective. Its kernel ker f = {x ∈ E1 | f(x) =
0} is a finite abelian group. For instance, for f = [n] with n 6= 0, the kernel of
f is called the group of n-torsion points on E, denoted E[n]. Using the group
structure for a complex torus C/Λ ' (R/Z)2, it is clear that E[n] ' (Z/nZ)2.
All these facts can in fact be proved algebraically.

If the elliptic curve E is defined over Q, the n-torsion points on E have
the important property that their coordinates are algebraic numbers. One
can think of those points as analogues of the classical roots of unity, since
they are solutions to an equation nx = 0, similar to the equation zn = 1 in
the multiplicative group C×. There are indeed numerous analogies from the
arithmetic point of view.

Example 1.3. Let E have equation y2 = x3 + a4x+ a6. Then

E[2] = {∞, (e1, 0), (e2, 0), (e3, 0)}

where ei, 1 6 i 6 3, are the distinct complex roots of x3 + a4x + a6 = 0. The
group structure on E[2] is described by (ei, 0) + (ej, 0) = (ek, 0) if i 6= j, with
k the element in {1, 2, 3} − {i, j}.

An isomorphism of elliptic curves is an isogeny f which is one-to-one, or
equivalently with ker(f) = 0. It is natural to try to classify all elliptic curves
up to isomorphism.

Over C, by simple changes of variable, any Weierstrass equation (1.1) can
be brought to the form y2 = x3+c4x+c6 for some c4, c6. As already mentioned,
such equations define an elliptic curve if ∆ = −16(4c3

4 + 27c2
4) 6= 0. Two

such equations can define isomorphic curves only if (with obvious notation)
c′4 = u4c4 and c′6 = u6c6 for some u ∈ C×. This shows easily that the so-called
j-invariant j = 1728(4c4)3/∆ completely describes the isomorphism class of
the elliptic curve. Moreover, the curves

y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
for j /∈ {0, 1728}

y2 = x3 − 1 for j = 0

y2 = x3 − x for j = 1728

show that every complex number is the j-invariant for some elliptic curve.
In arithmetic, it is also important to notice that elliptic curves E1 and E2

defined over Q might be isomorphic over C (i.e., have the same necessarily
rational j-invariant) without being isomorphic over Q, in which case E1 and
E2 are called twists of each other. For instance, if α2 ∈ Q, (x, y) 7→ (αx, α3/2y)
gives an isomorphism over C between y2 = x3 − x and y2 = x3 − α2x, and
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those two curves are not usually isomorphic over Q, for instance because the
elements of E[2] are rational points on y2 = x3 − x, whereas they are not on
y2 = x3 − α2x if α is not itself rational.

On the analytic side, where isomorphic tori correspond to homothetic lat-
tices, one shows quite easily that any lattice ω1Z ⊕ ω2Z ⊂ C can be brought
by homothety to the form Z ⊕ τZ for some τ which can be chosen in the
upper half-plane H = {z ∈ C | Im(z) > 0}. Then two such lattices Z ⊕ τZ
and Z ⊕ τ ′Z define isomorphic complex tori if and only if there exists some

γ =

(
a b
c d

)
∈ SL(2,Z) such that

τ ′ = γτ =
aτ + b

cτ + d
.

The j-invariant can then be described as a holomorphic map H→ C which is
SL(2,Z)-invariant; it is the prototypical example of a modular function.

References: [AEC, III.2,3,9,VI.4,C.12]

1.3 The arithmetic of elliptic curves: the Mordell-Weil
group

We now come to our main concern, which is the arithmetic properties of elliptic
curves, and in particular the structure of the set of rational points. Let E/Q
be an elliptic curve defined over Q. As already mentioned, the fact that
ai ∈ Q implies immediately that the set of rational points on E, denoted
E(Q), is in fact a subgroup of E. It is called the Mordell-Weil group of E.
The fundamental structure theorem is due to Mordell in this case.

Theorem 1.4. For any elliptic curve E/Q, the group E(Q) is a finitely gen-
erated abelian group.

This means that one has an isomorphism

E(Q) ' Zr ⊕ F

for some integer r > 0, called the rank of E (over Q), and some finite group F ,
which is simply the torsion subgroup of E(Q), i.e., the subgroup of elements
of finite order.

The current proof of the theorem is still much the same as Mordell’s. It
proceeds in two steps: in the first step, one shows that E(Q)/mE(Q) is finite
(for some integer m > 2, m = 2 gives quite elementary proofs). Then, given
representatives for the finite group E(Q)/mE(Q), one shows one to construct
a finite set of generators of E(Q).

From a diophantist’s point of view, the problem with the proof is that
the first part is ineffective: it does not provide (and no other argument is
proved to yield) the representatives for E(Q)/mE(Q) which are required for
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the second step (on the other hand, given the representatives, the second step
is completely effective). More precisely, one does get an upper bound on r, but
no bound for the “height” (i.e., the size) of elements filling up E(Q)/mE(Q).
(See below in Section 1.5 for the rigorous definition of the height; here you
can think simply of the largest of the number of digits of the numerator and
denominator of the x-coordinate of a point on E(Q)).

On the other hand, the finite torsion group F can be computed efficiently,
and in fact it has been possible to find a complete list of all finite abelian
groups which arise in this way (this is due to Mazur). Here is an example of
each torsion group (one can show that each arises for infinitely many elliptic
curves over Q):

• y2 = x3 − 2, torsion = {0}.

• y2 = x3 + 8, torsion = Z/2Z.

• y2 = x3 + 4, torsion ' Z/3Z.

• y2 = x3 + 4x, torsion ' Z/4Z.

• y2 − y = x3 − x, torsion ' Z/5Z.

• y2 = x3 + 1, torsion ' Z/6Z.

• y2 − xy − 4y = x3 − x2, torsion ' Z/7Z.

• y2 + 7xy = x3 + 16x, torsion ' Z/8Z.

• y2 + xy + y = x3 − x2 − 14x+ 29, torsion ' Z/9Z.

• y2 + xy = x3 − 45x+ 81, torsion ' Z/10Z.

• y2 + 43xy − 210y = x3 − 210x2, torsion ' Z/12Z.

• y2 = x3 − 4x, torsion ' Z/2Z× Z/2Z.

• y2 + xy − 5y = x3 − 5x2, torsion ' Z/4Z× Z/2Z.

• y2 + 5xy − 6y = x3 − 3x2, torsion ' Z/6Z× Z/2Z.

• y2 + 17xy − 120y = x3 − 60x2, torsion ' Z/8Z× Z/2Z.

Before continuing, here is a beautiful instance of the intrusion of elliptic
curves in a very classical problem: what are the rationals (so-called congruent
numbers) r such that there is a right-triangle with rational lengths a, b, c and
area r.

Proposition 1.5. A squarefree integer n > 1 is a congruent number if and
only if the elliptic curve

En : y2 = x3 − n2x

has rank rn > 1.
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The j-invariant of En is j(En) = 1728, which shows that all the curves En

are isomorphic over C (not over Q!), i.e., they are all twists of each other.
The arithmetic of elliptic curves has led J. Tunnell to a very simple algo-

rithm for checking whether a given squarefree integer n is a congruent number;
it is however still conditional on the Birch and Swinnerton-Dyer Conjecture
described below.

Theorem 1.6 (Tunnell). If the Birch and Swinnerton-Dyer Conjecture holds,
then (for odd squarefree n), n is a congruent number if and only if the number
of triples of integers (x, y, z) such that 2x2 + y2 + 8z2 = n is twice the number
of triples such that 2x2 + y2 + 32z2 = n.

Example 1.7. Let’s check that n = 41 is congruent:

41 =

4︷ ︸︸ ︷
2(±4)2 + (±3)2 =

4︷ ︸︸ ︷
(±3)2 + 8(±2)2 =

8︷ ︸︸ ︷
2(±4)2 + (±1)2 + 8(±1)2

=

8︷ ︸︸ ︷
2(±2)2 + (±5)2 + 8(±1)2 =

8︷ ︸︸ ︷
2(±2)2 + (±1)2 + 8(±2)2

41 =

4︷ ︸︸ ︷
2(±4)2 + (±3)2 =

4︷ ︸︸ ︷
(±3)2 + 32(±1)2 = c

8︷ ︸︸ ︷
2(±2)2 + (±1)2 + 32(±1)2

Note that Tunnell’s theorem does not provide the lengths a, b, c of the right
triangle with area 41, but they can be derived easily from the proof of the
proposition, provided one knows a point with infinite order on En.

References: [AEC, VIII, X], [K].

1.4 Reduction modulo primes and the Hasse-Weil L-
function of an elliptic curve

Let E/Q be an elliptic curve. By change of variable one can assume (i.e., E
is isomorphic to a curve such) that the Weierstrass equation (1.1) has integral
coefficients. For any prime p, one can reduce modulo p and look at solutions
(x, y) in the finite field Z/pZ of

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (mod p). (1.6)

For any prime p that does not divide the discriminant ∆E, this equation, when
one looks for solutions in an algebraic closure of Z/pZ, “defines” an elliptic
curve over Z/pZ (but we haven’t really said what this means and this requires
some care).

It is a simpler diophantine question to find the solutions to (1.6). In fact,
there are certainly only a finite number of them in (Z/pZ)2, or in homogeneous
coordinates in the projective plane over Z/pZ. The main fact is then the
following result which says quite precisely how many solutions there can be:
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Theorem 1.8 (Hasse). Let p - ∆E. The number Np of projective solutions
modulo p to the equation defining E can be written Np = p+ 1− ap with

|ap| 6 2
√
p. (1.7)

This is also called the Riemann Hypothesis for the curve E reduced mod-
ulo p.

Remark 1.9. If a1 = a3 = 0 then

ap = −
∑

x (mod p)

(x3 + a2x
2 + a4x+ a6

p

)
(1.8)

with (y
p
) the Legendre symbol, i.e., ( y

p
) is equal to 0 for y = 0, and otherwise

is equal to 1 if y is a square modulo p and −1 is y is not a square modulo p;
note that 1 + ( y

p
) is the number of solutions to the equation X2 = y in Z/pZ,

which gives quickly the formula stated from the definition Np = p+ 1−ap and
the fact that there is a single point at infinity.

It is reasonable to expect on probabilistic grounds that the size of this sum
should be about

√
p, because there is about the same chance that the value of

x3 +a2x
2 +a4x+a6 be a square as a non-square modulo p (for p odd, there are

as many squares as non-squares among non-zero integers modulo p, namely
(p− 1)/2).

Example 1.10. In general, there is no simpler explicit formula for ap. How-
ever, there is an elementary description if the curve has complex multiplication.
For instance, let E be the congruent number curve with equation y2 = x3− x,
which has complex multiplication by i. We have ∆E = 64. Then ap is given
as follows: if p ≡ 3 (mod 4), then ap = 0; if p ≡ 1 (mod 4), then (Fermat) one
can write p = a2 + b2 with a odd, b even, and a+ b ≡ 1 (mod 4); then ap = 2a.

For a few non-CM elliptic curves, one can give an “implicit” description.
For instance, consider the curve

X1(11) : y2 + y = x3 − x2

with discriminant −11, then define a(n) for n > 1 by the formal power series
identity

∑

n>1

a(n)qn = q
∏

n>1

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + 2q4 + q5 + · · ·

Then the ap for the curve X1(11) is the coefficient a(p).

Finding the points on the curve modulo primes is fairly easy, and can pro-
vide information on the rational points (i.e., the Mordell-Weil group). How-
ever, using only one prime is clearly not sufficient (for instance, because there
are usually many points modulo p which are not obtained by reduction of ra-
tional points). An important idea in number theory is to construct a “global”
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invariant that encompasses information obtained modulo all primes. In the
case of elliptic curves, this takes the form of the so-called Hasse-Weil zeta
function (or L-function) of an elliptic curve E/Q.

We define first a naive version, namely

`(E, s) =
∏

p-∆E

(1− app−s + p1−2s)−1,

where p runs over the primes not dividing the discriminant of E. This product
converges absolutely for Re(s) > 3/2 by Hasse’s Theorem (the precise shape
of the product may seem strange, but it is very well explained by looking at
the points on the elliptic curve, not only after reduction modulo p, but also in
finite extension fields of Z/pZ).

As a first statement indicating some kind of nice behavior of the various
reductions modulo primes, having to do with the fact that they have a sin-
gle “global” origin over Q, Hasse conjectured that `(E, s) has an analytic
continuation to C. This is now seen as an imprecise form of the modularity
of elliptic curves over Q, which was proved by Wiles, Taylor-Wiles, Breuil-
Conrad-Diamond-Taylor.

To explain the precise form, one must first refine the definition to obtain
the “right” L-function. This requires the insertion in the product of correct
factors at the primes p | ∆E.

First one may remark that because ∆E is not an isomorphism-invariant of
E, one can have p | ∆E for some Weierstrass equation but not for another.
So one defines the conductor of E, an integer f(E) > 1 such that p - f(E) if
and only if E has a smooth reduction modulo p, possibly after some change of
variable (isomorphism over Q). For p | f(E), the exponent fp of p in f(E) is
dictated by the geometry of the singular reduction, in ways that can be quite
complicated. But here are the simplest cases which are often sufficient:

• If the reduction of E modulo p has a node, then fp = 1 (“multiplicative
reduction”).

• If p > 3 and the reduction of E modulo p has a cusp, then fp = 2
(“additive reduction”).

• If p = 2 or p = 3 and the reduction of E modulo p has a cusp, the
definition of fp is much more intricate. In all cases, one shows that 2 6 fp 6 11.

If p | f(E), define

ap =





0 if fp > 2,

−1 if fp = 1, and the slopes of the node are in Z/pZ,

1 otherwise.

(for the second case, the meaning is that a node can be such that the two
“tangent directions” are either in Z/pZ or generate a quadratic extension of
Z/pZ; one speaks of split or non-split multiplicative reduction).
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Example 1.11. • For the curve X1(11) or for the curve y2 + y = x3 − x, one
has f(E) = 11. This is the smallest possible conductor for an elliptic curve
E/Q.
• If E is given by y2 = x3 + ax + b and Ed is its quadratic twist given by

dy2 = x3 + ax + b, where d is a squarefree integer, then f(Ed) divides d2 f(E),
with equality if d is coprime with f(E).

Using f(E) and those ap, the Hasse-Weil zeta function is defined by

L(E, s) =
∏

p|f(E)

(1− app−s)−1
∏

p-f(E)

(1− app−s + p1−2s)−1.

The meaning of the modularity of E can now be stated precisely. Denote by
aE(n) the coefficients in the expansion of the Euler product L(E, s) in Dirichlet
series

L(E, s) =
∑

n>1

aE(n)n−s

and define

f(z) =
∑

n>1

aE(n)e2πinz for z ∈ H, i.e, Im(z) > 0.

The series converges absolutely and uniformly on compacts to define a holo-
morphic function f : H→ C. Then modularity of E means that we have

f
(az + b

cz + d

)
= (cz + d)2f(z)

for all a, b, c, d ∈ Z, ad− bc = 1, with f(E) | c, and moreover that Im(z)|f(z)|
is bounded on H (those conditions express that f is a cusp form of weight 2
for the Hecke congruence subgroup Γ0(f(E))).

From this one deduces that L(E, s) has analytic continuation to an entire
function by means of the formula

(2π)−sΓ(s)L(E, s) =

∫ ∞

0

f(iy)ys−1dy,

which is due to Hecke (and applies to all cusp forms of weight 2). Thus Hasse’s
Conjecture follows in this indirect manner.

The theory of Hecke gives more information, which is also very important:
by means of the so-called Fricke involution and multiplicity one for Hecke
operators, one shows that L(E, s) also satisfies a functional equation

Λ(E, s) = wE f(E)1−sΛ(E, 2− s) (1.9)

for some wE ∈ {±1} (called the sign of the functional equation), where

Λ(E, s) = (2π)−sΓ(s)L(E, s).
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In addition, one can prove that the sign wE factorizes as a product over p | f(E)
of “local” signs wE,p ∈ {±1}. It is also important to know that wE is effectively
computable. For instance, if f(E) is squarefree, one can show that

wE = µ(f(E))aE(f(E))

where µ(f(E)) is the Möbius function, which is simply here (−1)k, k being the
number of distinct prime factors of f(E).

Remark 1.12. When the curve E/Q happens to be a CM curve (for instance,
the congruent number curve y2 = x3 − x), then one can give a much more
elementary proof of the modularity of L(E, s) than the general one provided
by Wiles et al.

References: [AEC, V,C.16], [I2, 8], [K, II].

1.5 The Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve defined over Q. Recall that the hope is still to solve,
as much as possible, the diophantine question of finding the Mordell-Weil group
of E. There is an intuition that the L-function of E, which has been built from
“local” information about the various reductions of E modulo primes, should
provide some help. It is not at all clear how to make this precise. However,
there is a beautiful conjecture that provides a very clean link.

By modularity, we know that L(E, s) is holomorphic, in particular defined
at s = 1. Then the simplest form of the Birch and Swinnerton-Dyer Conjec-
ture is

Conjecture 1.13. We have

rankE(Q) = ords=1 L(E, s),

i.e, L(E, s) has a zero at s = 1 with order equal to the rank of the Mordell-Weil
group of E.

Remark 1.14. To indicate the amazing consequences of such a statement, notice
that if the sign wE of the functional equation happens to be −1 (one often
speaks of “odd” functional equation, or “odd” curve), then by (1.9) we find
that L(E, 1) = 0, hence, under the Birch and Swinnerton-Dyer Conjecture, we
have rankE(Q) > 1 in that case. However, the condition wE = −1, as we
have remarked, is a local condition, which in fact only involves the behavior
of the curve at primes dividing f(E) (primes of bad reduction). So this very
simple-looking local condition should imply the global consequence that there
is a non-trivial point of infinite order in E(Q). The challenge is then to find
a way to obtain concretely such a point; no algorithm is known to solve that
problem.

There is also a more refined form of the conjecture, which takes the follow-
ing form:
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Conjecture 1.15. We have

L(E, s) ∼ α(s− 1)r as s→ 1,

where r = rankE(Q) and

α =
Ω|X(E)|R(E)c

|E(Q)tors|2
> 0, (1.10)

the various terms Ω, X(E), R(E), c being all strictly positive real numbers
which are described below.

Here are short descriptions of the unexplained quantities in this conjecture.
• |E(Q)tors| is the cardinality of the set of rational torsion points on E.

As we have already mentioned, it is easy to compute, and in fact it is well-
understood theoretically. (In particular, it takes only finitely many values).
• c (the Tamagawa number) is given by the product over primes of the

local Tamagawa numbers cp = |E(Qp)/E0(Qp)|, where E0(Qp) is the set of
points which have non-singular reduction modulo p. If E has good reduction
at p, we have cp = 1, so that the product really has only finitely many terms.
There is an efficient algorithm to compute cp. This algorithm is described by
K. Rubin in his paper in this volume.
• Ω is the real period of E, an elliptic integral of the type

∫

E0(R)

dx

2y

where E0(R) is the infinite component of the real points of the curve. It is
also easily computable.
• R(E) is the elliptic regulator : let x1,. . . , xr be a basis for the free part

of E(Q). Then
R(E) = det(〈xi, xj〉)

where 〈·, ·〉 is the canonical height on E(Q), the bilinear form coming from the
following quadratic form:

‖p‖ = lim
n→+∞

4−nh([2n]p)

where, for a point p = (x, y) ∈ E(Q), the “näıve” height h(p) is defined by

h(p) = h((x, y)) =
1

2
logH(x)

with

H(x) = max(|u|, |v|), if x =
u

v
with u, v integers and (u, v) = 1.

The regulator R is hard to compute, since it involves finding a basis of the
Mordell-Weil group, but because there are explicit and efficiently computable
formulas for the height function, one can indeed compute it very quickly given
the generators xi. Note in particular that if r = 0, we have R = 1 by definition.

References: [AEC, VIII.7,8,9C.16]



22 E. Kowalski

1.6 The Tate-Shafarevitch group

There only remains to explain the term X in the refined Birch and Swinnerton-
Dyer Conjecture. This is the so-called Tate-Shafarevitch group of E, which is
in many ways the most mysterious component of the formula. For instance,
although it is implicit in the statement that this must be a finite group, this
is not known in general!1

We will spend a few paragraphs trying to explain a bit more where this
group comes from and why it is so elusive. We do this partly because it is
quite a beautiful object in its own right, and partly from the belief that some
progress could be made on its study (e.g., the finiteness conjecture) if more
people, especially with an analytic frame of mind, looked at it more carefully...

First, here is a sketch explaining how the elements of X(E) arise. Let E/Q
be an elliptic curve, and assume its equation is of the type

y2 = (x− e1)(x− e2)(x− e3)

with ei ∈ Q (which means that the 2-torsion points (0, ei) are in E(Q)). We
are looking for a way to find all rational solutions.

Let (x, y) ∈ E(Q). Note that for p - ∆E, the smoothness modulo p implies
that at most one of the x− ei can be divisible by p. Since their product is the
square y2, we see that p occurs with an even exponent in the factorization of
each x − ei. This holds for all p - ∆E, hence putting everything together, we
can write

x− ei = ciw
2
i

for some zi ∈ Q, where the numerator and denominator of ci are divisible only
by primes dividing ∆E. Now if a p | ∆E has even exponent, we can change
wi and get a similar relation with ci coprime with this p. If p | ∆E has odd
exponent (say 2k + 1), we can still “remove” similarly the p2k part. Hence we
have a relation

x− ei = biz
2
i

with zi ∈ Q and bi is an integer which is product of some primes dividing ∆E,
each with exponent at most 1.

Obviously the set of choices for bi is finite. We do not know which bi
actually occur, but we can make a list of all those which can conceivably arise
from a rational point on E. Let us call T this finite, effectively computable, set
of triples b = (b1, b2, b3) of non-zero squarefree integers (i.e., those where each
prime divisor divides ∆E). We have shown that given (x, y) ∈ E(Q), there is

1 In fact, for elliptic curves over function fields over finite fields, the full Birch and
Swinnerton-Dyer Conjecture is now a theorem of Kato and Trihan, if the Tate-Shafarevitch
group is always finite.
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some b ∈ T , and rationals z1, z2, z3, such that





y2 = (x− e1)(x− e2)(x− e3)

x− e1 = b1z
2
1

x− e2 = b2z
2
2

x− e3 = b3z
2
3 .

(1.11)

We now consider the set Cb of solutions to these equations for a fixed
b; thus there are 5 variables (x, y, z1, z2, z3). The set Cb is a curve in affine
5-space (since there are 4 relations). It is easy to see, by eliminating some un-
knowns, that Cb is isomorphic (over Q) to the curve in 3-space with coordinates
(z1, z2, z3) given by the two equations

{
b1z

2
1 − b2z

2
2 = (e2 − e1)

b1z
2
1 − b1b2z

2
3 = (e3 − e1).

(1.12)

The crucial point is that for given b ∈ T (recall that T is not simply the set of
those (b1, b2, b3) that actually arise from a rational point, but may be larger),
the curve Cb may have a rational point or not. Certainly, if it does not, this
particular b could not in fact arise from a rational point on E in the way
described above. But conversely, if a rational point (z1, z2, z3) ∈ Cb(Q) exists,
then using (1.11) one clearly gets at least one point in E(Q). Now one shows
(by further elementary algebraic manipulations for instance) that finding a
rational point on each of the curves Cb (for which one exists) is tantamount to
finding representatives of the quotient group E(Q)/2E(Q). As the discussion
of Mordell’s Theorem recalled, it is then known how to find generators for
E(Q).

The above method of computing E(Q) can indeed be implemented in many
situations. However, in general it is confronted with the problem that there is
no algorithm known to check whether the curves Cb have a rational point or
not.

The common method of dealing with this has been to remark that one can,
on the other hand, compute quite easily the subset S ⊂ T of those b for which
Cb has “locally” a point at all p (essentially, a point modulo p for all p), and a
real-valued point. This is useful because, obviously, the set of b for which Cb
has a rational point is a subset of S. (The S is for Selmer; this set can also be
equipped with a group structure and is then called the 2-Selmer group of E).

However, there may be elements of S which still do not have a rational
point (one says that the “Hasse principle” fails for Cb). Those elements “are”
exactly the non-zero elements of order 2 in X(E). Note that, as a subset of
S, it is a finite set, but the point is that this is simply a subset of the full
Tate-Shafarevitch group.

The full group is not as easy to define in concrete terms. Here is a more
abstract definition, as a set (the group structure is not obvious): one says that
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a curve C/Q is a principal homogeneous space for E/Q if one can define an
action of E on C, i.e. an algebraic map (denoted + here)

E × C → C

(P, p) 7→ p+ P

such that p + (P + Q) = (p + P ) + Q and p + P = q has a unique solution
(denoted q − p) for all (p, q). (Note the similarity with the notion of an affine
space with its associated vector space in elementary geometry). There is always
a “trivial” homogeneous space, namely E itself with the action being given by
the addition on E.

It is not quite obvious, but in fact the curves Cb with equations (1.12) are
examples of homogeneous spaces for E. A definition of X(E) is then as the
set of all homogeneous spaces C/Q for which C(R) and C(Qp), for all p, are
non-empty, modulo the relation of isomorphism as homogeneous spaces, which
means that C ∼ C ′ if there exists an isomorphism f : C → C ′ defined over Q
with f(p+ P ) = p+ f(P ).

Once the group structure on X(E) is defined, one sees that E is the identity
element in X(E). Then, to make the link with the previous curves Cb, notice
that C ∈ X(E) is trivial if and only if C(Q) 6= ∅: first, if C is trivial, it
is isomorphic to E, so has a rational point corresponding to the origin 0 of
the group law of E. Conversely, if p0 ∈ C(Q) is a rational point, the map
p 7→ p− p0 gives the required isomorphism C ' E.

There is no reason (and it often happens that this is not the case) that
X(E) should contain only the elements of order 2 which have already been
described. One can show that X(E) is a torsion group (i.e., every element is
of finite order), and also that for any integer n > 1, the subgroup of n-torsion
elements in X(E) is finite (in ways at least similar in spirit to the case of
n = 2). However, we have no a priori bound on the order of an element of
X(E); to have such a (finite) bound would be equivalent to proving that X(E)
is finite. This we state formally as a conjecture due to Tate and Shafarevich:

Conjecture 1.16. For all E/Q, the Tate-Shafarevich group X(E) is a finite
group.

The refined form of the Birch and Swinnerton-Dyer Conjecture does not
make sense without assuming this statement. For quite a long time, it was the
case that not a single elliptic curve E/Q with X(E) finite was known, but the
work of Rubin, Kolyvagin and others have provided many examples in cases
where the order of vanishing of the L-function of E is 6 1.

A further useful known fact is that there is a (highly non-obvious!) sym-
plectic pairing (due to Cassels)

X(E)×X(E)→ Q/Z (1.13)

which is perfect if X(E) is finite; this gives information on the group structure.
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Example 1.17. Let E be the elliptic curve y2 = x3− 24300, j = 0. The rank
is 0, the regulator is 1, the torsion group is trivial, the Tamagawa number is
1, we have

L(E, 1) = 4.061375813927 . . .

Ω = 0.451263979325 . . .

and so |X(E)| = 9, which means (by the existence of the Cassels pairing) that
X(E) ' (Z/3Z)2. In fact, the following are equations for all locally trivial
homogeneous spaces under E:

C ' E x3 + y3 + 60x3 = 0

C1 3x3 + 4y3 + 5z3 = 0

C2 12x3 + y3 + 5z3 = 0

C3 15x3 + 4y3 + z3 = 0

C4 3x3 + 20y3 + z3 = 0

(each of the four equations Ci above corresponds to two opposite elements of
X(E), equivalently to a line in (Z/3Z)2). See [Ma] for more details.

Remark 1.18. (1) Here is the cohomological definition of X(E), which makes
the group structure apparent, but gives little information related to finiteness:

X(E) = ker

{
H1(GQ, E)→

∏

v

H1(GQv , E)

}
.

Similarly the set called S above can be introduced more generally as the Selmer
group for any prime `

Sel`(E) = ker
{
H1(GQ, E[`])→

∏

v

H1(GQv , E)
}

and then the elementary computations that have been sketched correspond to
the case ` = 2 of the following short exact sequence:

0→ E(Q)/`E(Q)→ Sel`(E)→X(E)[`]→ 0. (1.14)

(2) The author believes that analytic number theory should be brought to
bear on the finiteness conjecture for X(E). Here is one reason for this: there
is a well-known analogy between X(E) and the class group of number fields,
and in the latter case, the finiteness is known, but all proofs, in one way or
another, depend on inequalities, whether from geometry of numbers or from
the use of L-functions. Here is a wildly off-hand suggestion2: can one associate
to a given C ∈ X(E) some kind of holomorphic function fC , in such a way
that the fC are linearly independent, but belong to a finite dimensional space?
(Think of theta functions associated to ideal classes in an imaginary quadratic
field, which are modular forms of a fixed type, hence live in a space that can
be proved to be of finite dimension in a completely independent way...)

2 Of course, the author has tried to make something out of it without success...
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References: [AEC, Chapter X], see also the article by Swinnerton-Dyer
[Sw] in this volume.

1.7 Enter random matrices...

The Birch and Swinnerton-Dyer Conjecture is still unproved, but much ev-
idence exists in its favor (certainly for the simple form), so that it is very
reasonable to take it as an assumption if one wishes to study the “general”
behavior of the rank of elliptic curves over Q. One may expect it to help un-
derstand, for example, whether there are elliptic curves E/Q with arbitrarily
large rank.3

The conjecture certainly helps explain why such curves, if they exist, are
very hard to find: it is easy to show that if the Birch and Swinnerton-Dyer
Conjecture holds, there exists an absolute constant c > 0 such that for any
E/Q with rank r we have

f(E) > ecr; (1.15)

this is obtained by bounding the order of vanishing of L(E, s) at s = 1 by
the number N(E, 1) of zeros ρ of L(E, s) with | Im(ρ)| 6 1 (counted with
multiplicity), which is well-known to satisfy

ords=1 L(E, s) 6 N(E, 1)� log f(E)

with an absolute implied constant. If one assumes the Generalized Riemann
Hypothesis, there even exists c > 0 such that

f(E) > ecr log r (1.16)

(for both facts, see e.g. [IK, 5.8]; the analogue of this inequality is known to
be sharp over function fields, see [U1], and it may also be over Q).

Unfortunately, at the present moment at least, our knowledge about L-
functions and the distribution of their zeros is still quite limited, and we do
not have very many unconditional results. It is worth mentioning one striking
application of the Birch and Swinnerton-Dyer Conjecture, but one that goes
the other way: Goldfeld showed how one could use an L-function with a zero at
s = 1 of order > 3 to solve effectively the class number problem for imaginary
quadratic fields, and thus, instead of using L-functions to study elliptic curves,
it was elliptic curves which were used by Gross-Zagier to produce such an L-
function in confirmation with Goldfeld’s expectation.

However, for many questions, the recent development of Random Matrix
Models for families of L-functions offers a new, unexpected, way of probing
the diophantine mystery that is the Mordell-Weil group. As we will see in
the second part, new phenomena and conjectures are appearing and it can be
hoped that besides new insight, they will yield new ideas by comparison with
the viewpoints of algebraic geometry.

3In early May, 2006, N. Elkies announced having found a curve with rank > 28, improving
the previous record of 24.
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2 Variation of the rank in families of elliptic

curves

The purpose of this second part is to describe some of the known results
concerning the variation of the rank of elliptic curves, mostly over Q, when
a large number of curves are taken together and considered as a whole, not
as individuals. We discuss what analytic methods, especially based on L-
functions (and hence on assuming the Birch and Swinnerton-Dyer conjecture),
have been able to produce. Thus some other techniques (such as the use of
sieve methods to produce twists with “large” rank) will not be considered,
although they are certainly interesting.

It will be seen that even with quite deep assumptions, the outcome remains
in some ways disappointing. It may be that currently the most remarkable
achievements are the conjectures that arise out of the random matrix models
concerning the order of vanishing of L-functions, hence conjecturally concern-
ing the rank; this will be our second main topic.

For readers who skipped the first part, we recall some relevant notation:
f(E) is the conductor of an elliptic curve E/Q, and aE(n) denotes the coeffi-
cients of its Hasse-Weil zeta function L(E, s).

2.1 Families and invariants

Although the term “family” has a number of well-defined and deep meanings
in algebraic geometry and arithmetic, we will only need a very weak notion
here, amounting to hardly more than walking through a (multi)set of elliptic
curves with some indexing. (This is not the same definition discussed by
D. W. Farmer in his paper [Fa] in this volume; it may be said that we exploit
here some concrete features of the specific L-functions of elliptic curves, or of
modular forms, and benefit from the fact that for some problems, it is only
necessary to have means of “comparing” two curves taken in the family, which
is done efficiently using the Rankin-Selberg convolution; also, a useful survey
of the case of function fields, to which we will make passing references, is
contained in D. Ulmer’s paper [U2]).

Precisely, a family E of elliptic curves over Q is the data, for any T > 1,
of a finite (multi)set4 E(T ) of elliptic curves E/Q, which we subject to the
following simple conditions:

(a) There exist constants c1, c2 > 0 and α, β > 0 such that

c1T
α 6 |E(T )| 6 c2T

β (2.1)

for T > 1. (The curves are counted with their multiplicity in |E(T )|, if one
E/Q appears more than once in E(T ).)

4 We permit some of the curves to come “with multiplicity”; see the examples below,
especially algebraic families.



28 E. Kowalski

(b) There exist constants c3 > 0 and A > 0 such that for any T > 1 and
E ∈ E(T ), we have

f(E) 6 c3T
A, (2.2)

where f(E) is the conductor of E.

We will now give several examples to indicate more precisely what we have
in mind. For simplicity we often write E ∈ E to indicate that E ∈ E(T )
for some T ; similarly a map f : E → X for any set X is a family of maps
fT : E(T ) → X (so if a curve E belongs to both E(T1) and E(T2), one may
have fT1(E) 6= fT2(E), e.g. if fT (E) = T .)

(1) Algebraic families: Consider polynomials a1, a2, a3, a4, a6 ∈ Z[t] and
for any t ∈ Z let Et be the curve given by the equation

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x+ a6(t). (2.3)

If ∆(t), the discriminant of this curve, is not identically 0, there will be a finite
set S of t ∈ Z such that Et is an elliptic curve for t /∈ S. If the j invariant j(t)
is also non-constant, then letting

E(T ) = {Et | |t| 6 T and t /∈ S}

we get a family of elliptic curves; here there will be multiplicity if Et ' Es for
some t 6= s.

(2) Quadratic twists: This is partly a special case of the previous one. Fix
an elliptic curve E/Q and for all quadratic fundamental discriminants d let Ed

be the corresponding quadratic twist of E: if E is given by y2 = x3 +a4x+a6,
then Ed is the curve with equation

dy2 = x3 + a4x+ a6.

For any d, this is an elliptic curve and putting

EE(T ) = {Ed | |d| 6 T and d is a fundamental quadratic discriminant}

gives an example of a family (recall f(Ed) | d2 f(E), with equality if d is coprime
to f(E)).

(3) All curves indexed by height: This was considered by Brumer [B]: for
any integers a4 and a6 such that 4a3

4 + 27a2
6 6= 0 and such that p4 | a4 implies

that p6 - a6, let Ea4,a6 be the curve

Ea4,a6 : y2 = x3 + a4x+ a6,

given by the corresponding Weierstrass equation. Then let

EH(T ) = {Ea4,a6 | |a4|3, |a6|2 6 T} (2.4)

This is a family. It is known that every elliptic curve over Q occurs exactly
once among the Ea4,a6 .
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(4) All curves indexed by conductor: In this case we simply take

Ec(T ) = {E/Q | f(E) 6 T}

A variant consists in taking only one representative in each isogeny class; in
the corresponding family E ′c, one can identify

E ′c(T ) = {f ∈ S∗2(q,Z) | q 6 T}

the set of primitive forms of weight 2 for Γ0(q), q 6 T , which have integral
coefficients (this by modularity of elliptic curves over Q and the isogeny the-
orem).

(5) A counter-example: Here is a set of elliptic curves that (conjecturally)
fails to define a family in our sense. For any n > 0, let En/Q be a curve (if it
exists) with smallest conductor such that rankEn(Q) = n and E(T ) = {En |
0 6 n 6 T}. Two things prevent this from being a family: either En does
not exist for n large enough (although this is not currently expected to be the
case); or even if it exists, then on B-SD we have (1.15) so the conductor grows
exponentially, contradicting (2.2).

Obviously one can generalize the definitions above. Particularly, one could
consider elliptic curves over an arbitrary global field, or abelian varieties over
a global field. In the case of Q a narrower but very natural generalization is to
consider arbitrary primitive modular forms (of weight 2) instead of those asso-
ciated with Hasse-Weil L-functions of elliptic curves, or more geometrically (as
described by Shimura) the isomorphism (or isogeny) classes of abelian varieties
which are quotients of the jacobians J0(q) of the modular curves X0(q). We
will only give the briefest remarks below about the “general” generalizations,
but we will sometimes mention in more detail the case of the “family” E0 with
E0(q) the set of primitive weight 2 cusp-forms of level q (often restricted to
primes for simplicity). Indeed much stronger analytic results have been ob-
tained in this case, which can usefully serve as reference points in investigations
of families elliptic curves.

For example it is worth mentioning (correcting slightly my remark quoted
at the end of [U1]) that for an abelian variety A/Q of dimension g > 1, the
analogue of (1.16), expressed in terms of the order of vanishing instead of the
conductor, is that

ords=1 L(A, s)� log f(A)

log 1
g

log f(A)
(2.5)

on GRH, the implied constant being absolute, if the conjectured analytic con-
tinuation and functional equation of L(A, s) hold (note that f(A) > 3g also
follows from the latter); see e.g. [IK, 5.14], [M]. The bound (2.5) is sharp
because one can take A = Eg, g → +∞, for some elliptic curve E/Q of rank
> 1. One may suspect that it is possible to improve (2.5) if A is simple. This
is indeed the case for J0(q), q prime, for which log f(J0(q)) 6 q log q,

ords=1 L(J0(q), s) > q
24

+ o(q) (2.6)
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(by very easy sign considerations) and in fact

rank J0(q) > 7q
192

+ o(q) (2.7)

using Heegner points and fairly difficult non-vanishing results for L-functions [KM1].

Given a family E , we are interested in the average behavior of various
invariants related to the rank of the Mordell-Weil group of the curves E ∈ E .
For this we introduce the notation

AE(T, f) =
∑

E∈E(T )

f(E)

for any function f : E → C. If f = 1 we denote simply AE(T, 1) = AE(T ), the
number of elements in the family of “index” T (by (2.1), it grows polynomially).
This is the natural comparison function with respect to which one can speak
of “the average value” of f on E : for instance, if f is real valued, this average
value will be said to be 6M for some M ∈ R if

AE(T, f) 6MAE(T ) + o(AE(T ))

for T → +∞, and similarly with >M , = M ...
Among many interesting functions, we will mention the following:
(1) The rank, rk(E) = rankE(Q).
(2) The “analytic rank”, ord(E) = ords=1 L(E, s), well-defined since E/Q

is always modular. The B-SD conjecture implies rk(E) = ord(E).
(3) The special value, L(E) = L(E, 1), and more generally the moments

and derivatives: L(k)(E)m = L(k)(E, 1)m, or the characteristic functions v(k)

of k-th order vanishing and V (k) of order of vanishing > k: v(k)(E) = 1 if
ord(E) = k, and 0 otherwise, V (k)(E) = 1 if ord(E) > k and 0 otherwise.

(4) The root number w(E) = ±1, i.e. the sign of the functional equa-
tion (1.9).

(5) The parity of the rank, p(E) = (−1)rk(E); conjecturally p(E) = w(E),
and this is now known if the Tate-Shafarevitch group X(E) is finite [N].

(6) For a prime `, the order m`(E) of E(Q)/`E(Q) or the order s`(E) of the
`-Selmer group Sel`(E). One has `rk(E) 6 m`(E) 6 s`(E), and if E[`](Q) = 0,
then m`(E) = `rk(E) (see (1.14)).

In addition to the relations already indicated, an important observation
(going back to Shimura) is that ord(E) > 1

2
(1 − w(E)): the functional equa-

tion (1.9) imposes ord(E) > 1 if w(E) = −1, and otherwise ord(E) > 0 (the
latter is not a trivial fact: it needs modularity to be mentioned, and the fact
that Hecke L-functions are entire). In particular we derive for a family E

AE(T, ord) > AE(T,
1
2
(1− w)),

and on B-SD
AE(T, rk) > AE(T,

1
2
(1− w)),
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which is one of the ways to get lower-bounds for the average rank. Without
B-SD, recall that the Gross-Zagier formula and Kolyvagin’s results give

AE(T, rk) > AE(T,
1
2
(1− w)v′)

(this is the starting point towards (2.7) for instance.)

2.2 Conjectures and heuristics

Most of the current heuristics and conjectures on the variation of the rank
involve assuming B-SD and then using some of the well-known (or emerging)
conjectures about L-functions and the distribution of their zeros, a very exten-
sively studied subject. One can also try to argue from the arguments leading
to the proof of the Mordell-Weil theorem, but it is hard to make precise pre-
dictions because of the subtlety of issues involved.5 (A third method is to
make a guess, as in the conjecture that the rank of elliptic curves over Q is
unbounded; neither from the point of view of L-functions and B-SD, nor from
the Mordell-Weil theorem, does there appear convincing evidence at this time).

The basic heuristic about the order of vanishing of L(E, s) at s = 1 has
already been mentioned: it is that if w(E) = −1, then ord(E) > 1, and that
this should in general be the only way to produce an L-function vanishing at
the central point, the order of vanishing being then the minimal compatible
with w(E), i.e. L(E) should be non-zero if w(E) = 1 and L′(E) should be
non-zero if w(E) = −1. Note that this heuristic can only be true in a suitable
average sense since there certainly exist families of curves with rk(E) > 1 for
E ∈ E .

To transform this principle into more precise predictions for the average
rank, one needs another ingredient: namely, we are led to expect that in an
“unbiased” family E one has

AE(T, ord) ∼ AE(T,
1
2
(1 + w)) =

AE(T )

2
+
AE(T,w)

2
,

and one has to treat the average of the root number. A second heuristic
principle is that, again “in general”, one should have about equal chance to
have w(E) = 1 as w(E) = −1 in a family E , leading to the vague conjecture:

Conjecture 2.1. Let E be an “unbiased” family of elliptic curves over Q.
Then we have

AE(T,w) = o(AE(T ))

AE(T, rk) = AE(T, ord) ∼ 1
2
AE(T )

as T → +∞.

5 E.g. problems with class groups or ramification in the torsion fields of the curve.
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It remains to find a better idea of what should be an unbiased family. For
an algebraic family (Example 1 above), it is known that it is possible to find
E such that w(E), E ∈ E , is constant. However the results of Helfgott [He]
give a much clearer picture of the situation: in case the elliptic surface which
“is the family” has at least one place v of multiplicative reduction (a generic
situation), it shows that the even distribution of root numbers holds under
some deep conjectures on the squarefree numbers represented by polynomials
(and in fact are more or less equivalent with those), which are widely expected
to hold – in particular, are consistent with general principles of cancellation in
sums involving the Möbius function.

For the family EE of quadratic twists of a given curve E, one has

w(Ed) = χd(− f(E))w(E) (2.8)

for (d, f(E)) = 1, where χd = (d· ) is the Kronecker symbol associated with d. It
follows that w(Ed) takes the values ±1 depending on d (mod 4 f(E)), and does
so asymptotically equally often. In this case, Conjecture 2.1 was formulated
by Goldfeld.

Certainly the families EH and Ec are expected to be unbiased. It is known
that w(E) is evenly distributed for EH , but it is not yet known for Ec.
Remark 2.2. It is not necessarily the case that the family J0(q) is always simpler
to deal with than families of elliptic curves. For instance consider the problem
of averaging over q (prime) the root number w(q) of J0(q). One finds using the
Selberg trace formula and the formula for the dimension of the space of weight
2 cusp forms of level q that proving even distribution of ±1 is equivalent to
proving the even distribution of the value hodd(p) (mod 4) of the odd part of
h(Q(

√−q)) modulo 4! This is a special case of Cohen-Lenstra predictions but
is completely open. One also has

hodd(p) (mod 4) = Γp(
1
2
) (mod 4)

where Γp is the p-adic Gamma function and this makes sense because Γp(
1
2
)2 =

1. (This was remarked by H. Cohen who happened to be computing the right-
hand side using GP exactly as I came in his office asking about the distribution
of the left-hand side...)

2.3 Random matrix models

Quite recently, a deeper understanding of zeros of various L-functions has
been obtained from Montgomery’s first study of pair-correlation of zeros of the
Riemann zeta function and the observed relation with the density of spacings
of eigenvalues of random hermitian matrices of large rank, studied by Wigner
for entirely different reasons. This has been set in a general framework by
Katz and Sarnak [KS1], [KS2], who also gave very strong evidence by proving
an analogue over function fields. Although the fundamental principle (that
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the distribution of zeros of “families”6 of L-functions should be governed in
some sense by the corresponding distributions of eigenvalues of large random
matrices of some type, the latter being dictated by an hypothetical “symmetry
group” of the family) remains entirely conjectural over number fields, a body
of evidence exists, both numerical (see e.g. [O], [R1]), and theoretical: with
certain restrictions, one has verified predictions based on this principle and a
heuristic determination of the symmetry group, see e.g. [RoS] and [ILS] (the
latter is significant because it treats situations where the type of symmetry
group matters, and gets answers in perfect agreement). We will mention in
Section 2.5 some similar results for families of elliptic curves.

There are more detailed surveys in the papers and books already mentioned.
For us, it will be enough to state that by making various identifications of sym-
metry group (supported by the analogue cases over function fields, where this
group is a well-defined monodromy group), Conjecture 2.1 appears as a very
particular case of the Katz-Sarnak philosophy. But much more significantly,
the random matrix models can make more precise predictions, such as when
trying to estimate the number of curves in a family with rank at least 2. Being
stronger, the resulting conjectures are easier to test for numerically. We will
now describe a few examples.

Consider the subfamily EE,+ of the the family EE of quadratic twists of E/Q
such that w(Ed) = 1, and the average AEE(T, V ′′), which means that we count
the number of twists with even order > 2. Using the Waldspurger formula
for L(Ed, 1), Sarnak conjectured that AEE,+(T, V ′′) should be of order T 3/4 (or

equivalently AEE(T )3/4). Conrey, Keating, Rubinstein and Snaith [CKRS] use
random matrix models to predict:

Conjecture 2.3. There exist constants c+(E) > 0 and d+(E) ∈ R, depending
only on E, such that

AEE,+(T, V ′′) ∼ c+(E)AEE(T )3/4(log T )d+(E)

as T → +∞.

(In this case, namely the twists with w(Ed) = 1, the suspected symmetry
group is SO(2N); for odd sign, it is in fact different, namely SO(2N + 1), so
it is natural to distinguish between the two cases).

Although d+(E) can be predicted (not very easily), there is not yet a pre-
dicted value of the constant c+(E), which makes numerical tests of this conjec-
ture not as convincing as it could be. However, another conjecture is proposed
in [CKRS] which is easier to test. Namely, fix a prime p where E has good re-
duction, and split the family EE,+ in EE,s and EE,i where Ed ∈ EE,s if χd(p) = 1
and Ed ∈ EE,i if χd(p) = −1. Then

6There is not yet a compelling definition of this notion, beyond the kind of minimal
assumptions we have postulated; however, see D. W. Farmer’s article in this volume for a
stronger set of analytic axioms which is sufficient to confidently make very strong predic-
tions from Random Matrix Theory, but note that his “orthogonality” axiom is not usually
sufficient to prove rigorously the expected asymptotic formulas.
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Conjecture 2.4. We have

lim
T→+∞

AEE,s(T, V
′′)

AEE,i(T, V
′′)

=

√
p+ 1− aE(p)

p+ 1 + aE(p)
.

The numerical evidence about this in [CKRS] is quite good. Note the
interpretation of the limit as the ratio of |E(Z/pZ)| and |E t(Z/pZ)|, where
Et is the quadratic twist of the reduction of E modulo p. An arithmetic
explanation for the appearance of such a constant would be quite interesting.
This conjecture has been generalized by M. Young to the family of all elliptic
curves indexed by height [Yo4].

Random Matrix models have also been used to study the behavior of the
rank of the group of points on an elliptic curve E/Q which are defined in some
extension field K/Q. To do this, one uses the general form of the Birch and
Swinnerton-Dyer conjecture that predicts that the rank of E(K) be equal to
the order of vanishing of the L-function LK(E, s) of E over the field K. If
K/Q is a finite Galois extension with group G, there is a factorization

LK(E, s) =
∏

χ

L(E ⊗ χ, s)

of LK(E, s) in terms of twists of E by irreducible characters of the group G.
Although the analytic continuation and functional equation of these twists are
not often known, there are conjectures and partial results if χ is of degree 1
or 2. In particular, the desired properties hold if K/Q is a cyclic extension of
degree k.

David, Fearnley and Kisilevsky [DFK] used this approach to make in par-
ticular a conjecture on cyclic extensions K/Q for which the rank of E(K)
can be strictly larger than that of E(Q); under the Birch and Swinnerton-
Dyer Conjecture, this is the same as asking for what characters χ one of the
values L(E ⊗ χ, 1) can vanish. They predict for instance that there should
be only finitely many cyclic field of fixed prime degree k > 7 for which
rankE(K) > rankE(Q).

Another recent development has been the use by Delaunay [D2] of the gen-
eral conjectures and principles about moments of L-functions of various type
(due to Conrey, Farmer, Keating, Rubinstein and Snaith [CFKRS]) together
with the conjecture of Birch and Swinnerton-Dyer to predict the leading or-
der asymptotic for moments of all order of the order of the Tate-Shafarevitch
groups in a family of quadratic twists. More precisely, one can define the an-
alytic order S(E) using (1.10), for a curve with w(E) = 1, pretending that it
has rank 0 (so S(E) = 0 if rankE(Q) > 1), and then predict the asymptotic of
S(E)k by averaging L(E, 1)k. Similarly one can do the same with elements of
the family with w(E) = −1, using the derivative L′(E, 1) to define an analytic
order S ′(E). The expectation from Goldfeld’s Conjecture is that summing
both predicted heuristics for S(Ed)

k and S ′(Ed)k, restricted each respectively



Elliptic curves, rank in families and random matrices 35

to twists with w(Ed) = 1 or w(Ed) = −1, one should get the correct asymp-
totic for X(E)k as higher rank twists, for which S(E) = S ′(E) = 0, should
contribute less.

2.4 Theoretical results

We will now discuss some of the known theoretical results towards the problems
and conjectures discussed in the previous sections. First, we should comment
a little bit more on the relation between this kind of average consideration and
the B-SD conjecture. Obviously we do not expect to prove the conjecture by
this method, even in special cases. One could envision that, if it fails very
badly, this could be proved by averaging the rank and the order of vanishing
for a family and noting a discrepancy (e.g., if an algebraic family E built so
that rk(E) > 11 for all E ∈ E , as in [M], happened to be such that ord(E) = 9
or 10 for E ∈ E , where one would expect that AE(T, L(9)) would be comparable
to AE(T )...), but that is of course highly unlikely for many reasons.

More seriously, even without B-SD it is certainly an interesting problem
(requiring no special justification) to study the average of special values of
L-functions, and we can hope to provide some evidence for B-SD by giving
examples where the rank and the order of vanishing are of comparable size, on
average. This is an appealing problem, but (to the author’s knowledge), there
is no known “non-obvious” family E for which we can prove unconditionally
that

α 6 AE(T, rk)

AE(T, ord)
6 β

for some constants α, β > 0 and all T large enough (with the convention
0/0 = 1 which is natural here). Even in the case of J0(q), q prime, one can
prove

ord(J0(q)) 6 0.1q + o(q)

(see [KM2], [KMV]) in addition to (2.6) and (2.7), but there is no known upper
bound for rk(J0(q)) of the right order of magnitude.

Another way that average studies could be useful would be if they yielded
some insight into why the B-SD conjecture is true: what exactly makes this
local-global principle operate?

The best understood case is that of the family EE of twists of a given
E. In fact, Heath-Brown has proved very precise unconditional results on the
distribution of the order s2 of the 2-Selmer group of twists of the congruent
number curve. Precisely let E be the family of curves Ed of type

Ed : y2 = x3 − d2x

for d odd and squarefree. Heath-Brown proves [H1], [H2] the following results
on the distribution of s2.
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Theorem 2.5. Let E be the family above.
(1) For any k > 0 we have

AE(T, s
k
2) ∼ dkAE(T )

as T → +∞, where

dk =
k∏

j=1

(1 + 2j).

(2) For any r > 0, let χr be the characteristic function of s2(E) = 2r+2.
We have

AE(T, χr) ∼ 1
2
erAE(T ) (2.9)

as T → +∞, where

er = 2r
r∏

j=1

(2j − 1)−1
∏

j>0

(1− 2−2j−1).

(3) In particular for T > 2 we have

αAE(T ) 6 AE(T, rk) 6 βAE(T )

for some constants α, β > 0 and

AE(T, v)� AE(T ).

(3) For k > 0, let rk(E) be the characteristic function of the condition
rk(E) = k. We have

AE(T, rk) 6 1.742−(k2−k)/2AE(T )

for T large enough.

As discussed below, we only know about the order of vanishing ord in this
family that

(1
2

+ o(1))AE(T ) 6 AE(T, ord) and AE(T, ord) = o(T log T )

as T → +∞. (On GRH, we do get a bounded order of vanishing on average).
We can only say a few words about the strategy of the proof, since it is

very different from the other cases we will discuss below, and is independent
of L-functions (see Heath-Brown’s short note in this volume [H4]). The main
fact is (1), from which the rest follows quite directly. For instance, (3) follows
using the fact that 4 | s2(Ed) since the 2-torsion points are rational, and
s2(Ed) = 4 (resp. = 8) implies that rk(Ed) = 0 (resp. = 1) by the standard
exact sequence (1.14) for ` = 2 and the ensuing formula

rk(Ed) = dimZ/2Z Sel2(Ed)− dimZ/2Z(X(Ed)[2])− 2,
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together with the fact that the last two terms are even (by the existence of
Cassels’s pairing (1.13)).

By the classical descent theory that we sketched in Section 1.6, the elements
of the 2-Selmer group of Ed are identified with quadruplets (D1, D2, D3, D4)
of integers > 1 such that d = D1D2D3D4 and the system

D1X
2 +D4W

2 = D2Y
2 and D1X

2 −D4W
2 = D3Z

2

has solutions modulo p for all primes p (it automatically has real solutions);
compare with (1.12). This condition need be checked only at p | d, and leads
to a formula for s2(Ed) as a fairly involved sum of quadratic residue symbols.
Then one needs to take the k-th power of this expression and perform the
average: this is a very impressive analytic feat, which can not be summarized
here.

Remark 2.6. Although the presence of the Tate-Shafarevitch group means that
we can not confirm Conjecture 2.1 using this result, interesting evidence comes
from confronting it with the heuristics for the order of X(E) proposed by
Delaunay (see [D1] and his article in this volume [D3]), on the Cohen-Lenstra
model. Indeed, his heuristics suggest that for r > 0, the proportion of d for
which Ed has rank 0 and X(Ed)[2] ' (Z/2Z)2r should be

fr = 2−r(2r−1)

r∏

j=1

(
1− 1

4j

) ∏

j>r+1

(1− 2−2j+1)

(we use the fact that if X(E) is finite, then X(E)[2] ' X(E)/2X(E), which
is the group really considered by Delaunay.)

A simple computation reveals that fr = e2r in (2.9), therefore all twists
with dimZ/2Z Sel2(Ed) = r + 2 (even) are accounted for by curves of rank 0 if
this heuristic is correct. Or, to state it another way: if Conjecture 2.1 holds,
the heuristic for the 2-rank of X(Ed) is correct. Obviously, such consistency
is quite convincing. Note that for curves of rank 1 and r odd, one needs
to alter a little bit the proposed heuristic of Delaunay (specifically, replace
Mu(f) = M s

u/2(f) by Mu(f) = M s
u(f) in [D1, p. 195, Heuristic Assumption])

to get agreement, but this seems a reasonable change (the u/2 does not carry
great evidence towards it).

When seeing this, Delaunay also noticed that Heath-Brown proved in [H1]
that the average of s2(Ed)/4 is equal to 3, both over curves with even rank and
over curves with odd rank (note that the parity conjecture is proved by Monsky
in the Appendix to [H2] for this family, so having even or odd rank translates
to a congruence modulo 8 for d). Assuming Conjecture 2.1 in this case, this
translates to statements on the average of |X(Ed)[2]|, namely it should be = 3
for rank 0 and 3/2 for rank 1. This agrees with [D1, Example 7], again using
Mu instead of Mu/2.

The methods of Heath-Brown have been partly generalized to the family of
quadratic twists for a curve E with the 2-torsion points rational [Y2], but not
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in full generality. One can however study the order of vanishing using analytic
techniques. The best results are due to Perelli and Pomykala [PP]. They prove
the following:

Theorem 2.7. Let E/Q be a fixed elliptic curve and consider the family EE
of quadratic twists by d coprime with f(E). For any ε > 0 we have

AEE(T, rk) > AEE(T, v′)� AEE(T )1−ε (2.10)

for T > 2, and any ε > 0, the implied constant depending only on E and ε.
Moreover we have

AEE(T, ord) = o(T log T ) as T → +∞. (2.11)

Recall that (2.5) gives the trivial upper bound

AE(T, ord)� (A+ 1)AE(T )(log T )

for any family E and T > 2, the implied constant depending on the family, so
the gain in (2.11) is quite small. It seems very hard to improve this however,
as it depends on a difficult large-sieve type inequality of Heath-Brown for real
characters.

On GRH, Goldfeld [G] has proved that the order of vanishing is bounded on
average. Also, Ono [On] currently has the best lower bound on the proportion
of twists with L(Ed) 6= 0 (hence of twists with rk(Ed) = 0):

AEE(T, v)� AEE(T )(log T )c(E)−1

for T > 2 and some constant c(E) > 0, the implied constant depending only
on E. In some cases this has been improved to a positive proportion (see
e.g. [Y1]).

The method of proof for (2.10) is based on computing the first and second
moments (AEE(T, L′) and AEE(T, |L′|2)) of L′(Ed): Cauchy’s inequality gives

AEE(T, v′) > AEE(T, L′)2

AEE(T, |L′|2)
(2.12)

so it suffices to give a lower bound for the first moment AEE(T, L′) and an
upper bound for the second moment AEE(T, |L′|2); this is done (as is the case
for (2.11)) using the methods sketched in the next section. Note that the
moment conjectures for mollified families of L-functions, if applicable in this
case, immediately imply that the order of vanishing of the twists is bounded
on average.

Consider now the case of an algebraic family E . Basically the same methods
used for quadratic twists are available, but the averaging is much more difficult
to perform in general and currently the only non-trivial results are known under
the additional assumption of the Generalized Riemann Hypothesis to study the
L-functions. Then one can prove the following result:
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Theorem 2.8. Let E be an algebraic family of elliptic curves over Q. Assume
GRH and the Tate conjecture for the elliptic surface associated to E/Q. Then
we have

AE(T, ord) 6 (rank E(Q(t)) + degNE + 1
2
)(1 + o(1))AE(T )

as T → +∞, where rank E(Q(t)) is the rank of E as an elliptic curve over
Q(t) and NE is the conductor polynomial defined by

NE =
∏

∆(t)=0

(X − t)
∏

c4(t)=c6(t)=0

(X − t) ∈ Z[X], (2.13)

c4(t) and c6(t) being the usual invariants for the curves (2.3).

We will describe more precisely below the particular case of Tate’s conjec-
ture which is required. The theorem as stated is due to Silverman [S], building
on earlier work of Fouvry and Pomykala [FP] and Michel [Mi] which estab-
lished weaker or slightly different inequalities, all with the conclusion that the
average order of vanishing of E is bounded, hence also the rank on B-SD. (Note
however that the generic rank of E(Q(t)) arises in the bound independently of
B-SD).

This average boundedness of the rank was also proved by Brumer [B] for
the family EH of all elliptic curves ordered by height. The best known result
is due to M. Young [Yo1, Yo3]:

Theorem 2.9. Let EH be the family (2.4). Assume GRH for L-functions of
elliptic curves. Then we have

AEH (T, ord) 6 ( 25
14

+ o(1))AEH (T )

as T → +∞.

Brumer had the constant 2.3 instead of 25/14, which had been improved to
2 by Heath-Brown [H3]. Young’s result is significant because a constant which
is strictly smaller than 2 implies that a positive proportion of the curves must
have rank either 0 or 1.

2.5 Basic analytic tools

The analytic investigations of the L-functions of elliptic curves are based on
two quite general formulas which go back in principle to Riemann and other
early investigators of the Riemann zeta function. The first, called somewhat
misleadingly “the approximate functional equation”, is a convenient expression
for L-functions in the critical strip where the Dirichlet series is not convergent.
Here is one of many variants, which we state for modular forms, since it is not
in any way specific to elliptic curves.
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Proposition 2.10. Let f be a primitive cusp form of weight 2 and conductor
q with Fourier coefficients λf (n) and root number w(f). We have for X > 1

L(f, 1) =
∑

n

λf (n)

n
exp
(
− 2πn

X
√
q

)
+ w(f)

∑

n

λf (n)

n
exp
(
−2πnX√

q

)
.

In particular if E/Q is an elliptic curve we have for any X > 1

L(E, 1) =
∑

n

aE(n)

n
exp
(
− 2πn

X
√

f(E)

)
+ w(E)

∑

n

aE(n)

n
exp
(
− 2πnX√

f(E)

)
.

For a proof see e.g. [IK, 5.2].

The second principle is of the same type, but applies to the logarithmic
derivative of the L-function instead. It is (also misleadingly) called the “ex-
plicit formula”. To state one of its variants, let f be again a modular form
and define Λf (n) by the Dirichlet series expansion

−L
′

L
(f, s) =

∑

n>1

Λf (n)n−s

for σ > 3/2, so that Λf is supported on prime powers and

Λf (pk) = (αkp + βkp )(log p)

where αpβp = p and αp + βp = λf (p) (at least for (p, q) = 1). In particular
note that for (p, q) = 1 we have

Λf (p) = aE(p)(log p), Λf (p2) = (aE(p2)− 2p)(log p). (2.14)

Proposition 2.11. Let f be a primitive cusp form of weight 2 and conductor
q with Fourier coefficients λf (n), and let η be a sufficiently smooth function
on ]0,+∞[ with compact support such that η(x−1) = η(x). We have

2
∑

n>1

Λf (n)

n
η(n) = η(1) log q −

∑

ρ

η̂(ρ− 1)

+
1

2iπ

∫

(1/2)

(Γ′

Γ
(s) +

Γ′

Γ
(1− s)

)
η̂(s)ds

where ρ runs over zeros of L(f, s) and η̂ is the Mellin transform of η. In
particular if E/Q is an elliptic curve we have

2
∑

n>1

ΛE(n)

n
η(n) = η(1) log f(E)− ord(E)η̂(0)−

∑

ρ6=1

η̂(ρ− 1)

+
1

2iπ

∫

(1/2)

(Γ′

Γ
(s) +

Γ′

Γ
(1− s)

)
η̂(s)ds.
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For a proof, see e.g. [IK, 5.5]; note that in the second formula we have
isolated the (possible) zero at s = 1 from the others.

Before going further, here are a few remarks on these two formulas. In the
first one, a standard choice of the parameter X is X = 1, in which case the
effective length of summation is essentially n 6

√
f(E) for both sums, after

which the tails are very small. However, taking X =
√

f(E) is also useful
because, although it lengthens the first sum to n 6 f(E) – which can make
it unmanageable –, it gets rid of the second sum involving the root number.
The latter can be very much of a problem. There are similar formulas for all
moments L(k)(E)m of all derivatives, with aE(n) replaced by the coefficients of
the corresponding Dirichlet series, and the “length” becoming f(E)m/2.

The second formula does not involve the root number, and partly for this
reason it has been the most commonly used. But because it requires a certain
control of the zeros of L(E, s), in applications it has usually been used on the
assumption that GRH holds. In this case, we have Re(ρ−1) = 0 and it is easy
to choose a simple test function η for which η̂(s) > 0 for all s with Re(s) = 0.
Because of the sign, this makes it suitable for upper bounds for ord(E), but
not for lower bounds. As we’ll see, in applications the support of η is such that
n appears up to f(E)κ for some κ > 0 (a small κ can still be useful).

2.6 The Delta-symbol for a family

In any case, for both formulas, if one wishes to use them for families, performing
the average over E ∈ E yields expressions for AE(T, L) or AE(T, ord) in terms
of the following fundamental averages, called the Delta-symbols, or twisted
Delta-symbols, of the family:

∆T (n,m) = AE(T, aE(n)aE(m)) =
∑

E∈E(T )

aE(n)aE(m), (2.15)

∆w
T (n,m) = AE(T,w(E)aE(n)aE(m)) =

∑

E∈E(T )

w(E)aE(n)aE(m). (2.16)

Precisely, for AE(T, L), one gets ∆T (n, 1) and ∆w
T (n, 1), and for AE(T, ord),

one gets combinations of ∆T (pk, 1). The second parameter m is potentially
significant if one could involve a mollifier (as has been done with J0(q)); it can
be dispensed with using the formula

aE(n)aE(m) =
∑

d|(n,m)
(d,f(E))=1

daE

(nm
d2

)
,

but this is not necessarily the best arrangement.

The reason of the terminology is the heuristic that, for n = m, there is no
cancellation in the sum and ∆T (n,m) should be large. In fact, recalling the
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Hasse bound |aE(n)| 6 d(n)
√
n and w(E) = ±1, we see that

|∆T (n,m)| 6 τ(n)τ(m)
√
nmAE(T ), (2.17)

|∆w
T (n,m)| 6 τ(n)τ(m)

√
nmAE(T ), (2.18)

and one would expect that ∆T (n, n) is roughly of the order of magnitude of the
bound above, from the Sato-Tate conjecture. On the other hand, if n 6= m one
can expect random sign changes in aE(n)aE(m), E ∈ E , that make the sum
smaller than this trivial bound. This leads to expect some kind of approximate
orthogonality, at least in certain ranges of n and m. Similar effects are easy
to see for the analogue case of Dirichlet characters modulo q, where we have

∑

χ (mod q)

χ(n)χ(m) = ϕ(q)δq(n,m),

where δq(n,m) = 1 if n ≡ m (mod q) and (nm, q) = 1, and δq(n,m) = 0
otherwise, in particular if n 6= m and n,m 6 q. Similarly, but not so easily,
for the variety J0(q) one has the following easy consequence of the Petersson
formula:

∑

f

ωfλf (n)λf (m) =
√
mnδ(m,n) +O(mn(m,n, q)q−3/2)

(see e.g. [IK, 14]), where f runs over an orthogonal basis of the space of weight
2 cusp forms of level q, and ω−1

f = 4π〈f, f〉, the Petersson norm of f , which
is of size about q. Alternately, one can use the Selberg Trace Formula for the
Delta symbol in this case (see [V]), with a slightly weaker estimate on the error
term.

The simplest case for families of elliptic curves is that of the family EE of
quadratic twists Ed (with (d, f(E)) = 1) of a given E. In this case aEd(n) =
( d
n
)aE(n) and w(Ed) is given by (2.8) so

∆T (n,m) = aE(n)aE(m)
∑[

|d|6T

( d

nm

)
,

∆w
T (n,m) = w(E)aE(n)aE(m)

∑[

|d|6T

(−d f(E)

nm

)

where
∑[

is the sum over the relevant d. Since d 7→ ( d
nm

) is a Dirichlet

character modulo nm which is trivial if and only if nm is a square, it is not
hard to derive better individual bounds than (2.17), (2.18). However (partly
because of the restrictions on d) to prove an asymptotic formula for, say,
AEE(T, L′), it is necessary to keep the Delta symbol in non-estimated form
and perform some transformations in the ensuing sum over n. See [I1] for the
details, which yield for instance

AEE(T, L′) = α1AEE(T )(log T ) + α2AEE(T ) +O(T 27/28)
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as T → +∞, for some constants α1 > 0 and α2 > 0. This gives the lower
bound required in (2.12).

In this situation, it is unimportant (for analytic purposes) that we are
dealing with elliptic curves: all the necessary estimates are in fact valid for
arbitrary primitive cusp forms of weight 2.

2.7 Sketch of proof of Theorem 2.8

We consider the situation of an algebraic family. In this case one uses the
explicit formula for a test function of the type ηλ(x) = η(xλ

−1
), the parameter

λ > 1 allowing to “localize” optimally the sum. The fixed test function η
is compactly supported in [e−1, e], and such that η(it) > 0 for all t ∈ R, so
the sum over zeros is > 0 under GRH. (For instance, the triangle function
η(x) = max(1 − | log x|, 0) is commonly used.) Since η̂λ(s) = λη̂(λs), by
positivity one derives from Proposition 2.11 that

λ ord(E)η̂(0) 6 η(1) log f(E)− 2
∑

n

ΛE(n)

n
η(nλ

−1
) + (arch),

where (arch) designates the archimedean contribution of the Gamma function,
which is easily handled because it is independent of t. Hence

λη̂(0)AE(T, ord) 6 η(1)AE(T, f)− 2
∑

n

η(nλ
−1

)AE
(
T,

ΛE(n)

n

)
+O(AE(T ))

(2.19)
for T > 2, the implied constant depending on the family. The average of the
conductor is easily handled by (2.2) which holds with A = deg ∆, where ∆ is
the discriminant polynomial, or with A = degNE where NE is the conductor
polynomial (2.13):

AE(T, f) 6 (degNE)AE(T )(log T )(1 + o(1))

as T → +∞
The last sum can be expressed in terms of the Delta symbols for n = pk.

Those are given by

∆T (pk, 1) =
∑

|t|6T
aEt(p

k).

The individual Hasse bound is sufficient to treat all k > 3 to show that for
T > 2 we have ∑

n=pk

k>3

ΛE(n)n−1η(nλ
−1

)� AE(T ).

For the remaining values of k, the main observation is that t 7→ aEt(p
k) is

periodic of period p, except for some innocuous problems when p | ∆(t). Thus



44 E. Kowalski

one is led to study the local average

AkE(p) =
1

p

∑

t (mod p)
∆(t)6=0

aEt(p
k), (2.20)

and apart from boundary terms and those t where p | ∆(t) we have

∆T (pk, 1) ' AkE(p)AE(T ). (2.21)

The treatments of Fouvry-Pomykala, Michel and Silverman diverge at this
point. Before going further, we remark that this shows that (except if Ak

E(p) =
0) there is in fact no cancellation in ∆T (pk, 1) as T grows, for fixed p and k.
(Contrast with the Petersson formula). So improving the results below require
a non-trivial treatment of the sum over p afterward, which is quite difficult
(Young [Yo1], for instance, did succeed in exploiting this sum over p).

Chronologically, Fouvry and Pomykala used the trivial bound for k = 2,
with a contribution of size about λAE(T )(1 + o(1)) to (2.19). For k = 1 they
use the character sum expression (1.8) for aE(p) (if E has good reduction at
p > 5)

aE(p) = −
∑

x (mod p)

(ft(x)

p

)

if Et is put in Weierstrass form

Et : y2 = x3 − 27c4(t)x− 54c6(t) = ft(x),

yielding an expression for AE(p) = A1
E(p) as a two-variable character sum

AE(p) = −1

p

∑∑

x,t

(x3 − 27c4(t)x− 54c6(t)

p

)
.

One expects, at least generically, square-root cancellation in this sum, i.e.
that this expression should be bounded. Fouvry and Pomykala prove this
under some genericity assumptions by invoking general bounds of Adolphson
and Sperber.

On the other hand, Michel sees the estimation of AE(p) as a problem about
a one-variable sum of local traces of Frobenius acting on the `-adic sheaf F of
rank 2 whose local traces at a point of U = {t ∈ Z/pZ | ∆(t) 6= 0} are aEt(p),
namely

F = R1π!Q`

where π : E → P1 is the morphism defining the algebraic surface E (modulo
p). Estimating AE(p) reduces to the computation of the cohomology groups
of F , and Michel treats this with the same kind of arguments that Katz [K]
used to prove (for instance) the vertical Sato-Tate distribution for Kloosterman
sums. The only assumption on E that remains necessary (in order that the
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required monodromy group be as large as possible) is that the family be non-
constant, i.e. the polynomial j(t) is not constant (modulo p), which excludes
only finitely many p if j(t) ∈ Z[t] is not constant, and the estimate obtained
is:

Proposition 2.12. Let E be a non-constant algebraic family of elliptic curves
modulo p. We have

|AkE(p)| 6 (k + 1)(deg ∆(t)− 1)p(k−1)/2.

and if k = 1 one can replace 2(deg ∆(t)− 1) by degNE .

Finally, Silverman handles the case k = 2 as Michel did, except that he
shows that the bound he obtained remains valid for a constant family (using
Rankin-Selberg convolution). For k = 1, he does not use character sums to
handle AE(p) but instead a formula conjectured by Nagao and proved by Rosen
and himself [RoS], namely

∑

p6x
AE(p)(log p) ∼ − rank E(Q(t))x,

as x → +∞, under the assumption that the Tate Conjecture holds for E/Q,
i.e. that the order of the pole at s = 2 (on the edge of the region of absolute
convergence) of the L-function attached to H2(E/Q̄,Q`) is equal to the rank
of the Néron-Severi group of E/Q. Thus, summing the contribution of n = p
in (2.19) yields a contribution which is

−λ
2

(1 + o(1))(rank E(Q(t)))AE(T )

by summation by parts (using the fact that p 6 eλ).
The outcome of all this (and a correct treatment of boundary terms) is the

estimate

λη̂(0)AE(T, ord) 6 (1 + o(1))AE(T )
{

(degNE)(log T ) +
λ

2
(rank E(Q(t)))

+
λ

2
+O(1) +O(λeλ)

}
.

Taking λ slightly smaller than log T gives the desired average bound.
An interesting point is that the periodicity of t 7→ aEt(p) means that in fact

the family can be restricted to certain parameters t as long as they are very
well-distributed in arithmetic progressions. For instance, one checks easily that
using

π(x; q, a) =
li(x)

ϕ(q)
+O(x1/2(log x))

which follows from GRH for Dirichlet L-functions, one can deduce that the
average rank is still bounded for the family Ep which restricts t to prime values:

Ep(T ) = {Et | 1 6 t 6 T and t is prime}.
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There are (at least) two interesting problems arising out of this proof. The
first is to remove the dependence on GRH; this has been done for quadratic
twists, but at the cost of getting only (2.11) instead of boundedness of the
average rank. No other instance is known. (Even Brumer’s family of curves
indexed by height, which seems the most accessible, remains out of reach; see
however the recent work of Young [Yo2] concerning the proportion of non-
vanishing). It should be noted that in the case of J0(q), this removal requires
much more delicate analysis in the form of density theorems for the possible
zeros of L-functions close to the critical line, see [KM2].

The other possibility is to improve on the average rank. The argument
shows that the only possible way to do so is to treat non-trivially the sum over
the zeros in the explicit formula to get some cancellation with the other terms
(especially with the ΛE(p2) contributions). This is closely related with the is-
sues surrounding the predictions of random matrix theory discussed previously,
and has been done quite successfully by Iwaniec, Luo and Sarnak [ILS] for J0(q)
and other families of automorphic L-functions. Some results for algebraic fam-
ilies are due to M. Rubinstein [R2], S. Miller [Mil1] and M. Young [Yo1], con-
firming the 1-level and 2-level densities (the latter does distinguish between
various symmetry groups).

2.8 Some discussion of numerical evidence

Due to the large choice of well-documented and well-implemented algorithms
for computing with elliptic curves7, particularly over Q, many of the conjec-
tures concerning them can be put to the test, and in particular those concerning
the rank. This has led to the controversial problem of “excess rank”, as a num-
ber of experiments with seemingly innocuous families revealed a fairly large
proportion of curves with rank > 2 (see e.g. [KZ], [Fe] or [B, 1st paragraph]).
Since an occurrence of excess rank for an infinite family (not chosen in a spe-
cial way to have large rank) would put into question the general Katz-Sarnak
philosophy, there is a certain agreement that the data available simply reflects
a problem with the size of the sample.

The most convincing theoretical argument against excess rank maybe fol-
lows by doing the numerical experiments with the 2-rank of the Selmer group
for the congruence number curves, and comparing with the results of Heath-
Brown, since those are unconditional. Of course, the Selmer group could have
a very different behavior, but as explained in [H2, p. 336], small tests tend to
reveal an “excess rank” in this case too, which has to disappear in the long
run... Moreover, discussing his proof, Heath-Brown indicates one possible ex-
planation for a very slow convergence towards the limiting distribution: in his
arguments, the k-th moment of s2(Ed) must be averaged over numbers having
at least 16k prime factors before it gets close to the asymptotic value!

Another very simple type of experiments which has not been widely per-

7 For instance with the Pari/GP system [Pari].



Elliptic curves, rank in families and random matrices 47

formed is that of computing the Delta symbols for some families of elliptic
curves. This is much faster, of course, than computing the rank exactly, but it
can in theory be quite useful if one compares the results for two families, one
of which is – if possible – well-understood. As indicated in Section 2.5, for a
number of analytical arguments it is the quasi-orthogonality of ∆T (m,n) which
is at the heart of a successful average study of special values of L-functions.
Even if one family is inaccessible, a behavior of the Delta symbol similar to
that of another would be good indication that the rank might also behave in
a similar way.

With this in mind, we performed the computation for the most mysterious
family Ec, that of elliptic curves indexed by the conductor. For this we used
Cremona’s table, which currently lists all 845960 elliptic curves over Q with
conductor < T = 130000, up to isomorphism. (The table also contains the
rank, for which the distribution is: rank 0, 340655 curves, rank 1, 427012
curves, rank 2, 77357 curves, rank 3, 936 curves, and no rank > 4). We
limited the computation to ∆(p, 1) where p is a prime p 6

√
T (log T ) < 4246,

since according to the approximate functional equation those are sufficient to
recover L(E, 1), and we also computing the twisted Delta-symbols ∆w

T (p, 1) as
well as the sum 1

2
(∆T (p, 1) + ∆w

T (p, 1)).
The following graphs show for instance the Delta symbols for p = 61 and

p = 797; the horizontal axis is the number of curves counted up to x, i.e.
AEc(x), x 6 T .
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Figure 1: Delta symbols for p = 61

Notice that, as far as ∆T (p, 1) is concerned, in the first case (p = 61) one
has a curve very close to linear, which suggests strongly an effect of periodicity
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Figure 2: Delta symbols for p = 797

like the one that does happen for the Delta symbol of an algebraic family of
elliptic curves. This might seem natural and taken to be the reflection of an
equidistribution statement for the reductions of curves E ∈ Ec(T ) modulo p as
T → +∞, among the elliptic curves modulo p, except that the natural linear
factor to expect for ∆T (p, 1) would be (compare (2.20) and (2.21))

Ac(p) =
1

p

∑

E (mod p)

aE(p) = 0,

where the sum is over all elliptic curves modulo p, so quadratic twists with ap,
−ap cancel out. This does not fit the data available at all!

On the other hand, for p = 797, the Delta symbol behaves much more
randomly. It should be mentioned that those are the two most common aspects
of the graphs for the primes considered, with the first case being most common,
and maybe more significantly, with the “linear” curves having negative slopes.
Note this means a tendency to have aE(p) < 0, which increases the number of
points modulo p, something which is often an indication of a larger rank.

In both cases, however (again this is typical) the introduction of the root
number changes the picture completely: in the first case, there seems to be a
correlation between aE(p) negative and w(E) = −1 (not too surprising in fact,
by the above remark), so that the twisted Delta symbol seems to be increasing
(the curve does not look quite as linear). For p = 797, the twisted symbol first
seems to oscillate, but then has a marked tendency to increase.

All in all, these graphs look very mysterious to me. I think however that
the Delta symbol deserves better scrutiny, both numerical and theoretical.



Elliptic curves, rank in families and random matrices 49

References

[Ba] A. Baker: Transcendental number theory, Cambridge Math. Library,
Cambridge Univ. Press (1975).

[B] A. Brumer: The average rank of elliptic curves, I, Invent. math. 109
(1992), 445–472.

[CFKRS] B. Conrey, D. Farmer, J.P. Keating, M. Rubinstein and N. Snaith: Inte-
gral moments of L-functions, Proc. Lond. Math. Soc., 91 (2005), 33–104.

[CKRS] B. Conrey, J.P. Keating, M. Rubinstein and N. Snaith: On the frequency
of vanishing of quadratic twists of modular L-functions, in Number the-
ory for the millennium, I (Urbana, IL, 2000), 301–315, A K Peters (2002).

[DFK] C. David, J. Fearnley and H. Kisilevsky: Vanishing of L-functions of
elliptic curves over number fields, in this volume.

[D1] C. Delaunay: Heuristics on Tate-Shafarevitch groups of elliptic curves
defined over Q, Exper. Math. 10 (2001), 191–196.

[D2] C. Delaunay: Moments of the orders of Tate-Shafarevitch groups, Inter-
national J. of Number Theory, Vol. 1, No. 2 (2005) 243–264.

[D3] C. Delaunay: Heuristics on class groups and on Tate-Shafarevich groups,
in this volume.

[Fa] D. Farmer: Modeling families of L-functions, in this volume.

[Fe] S. Fermigier: Étude expérimentale du rang de familles de courbes ellip-
tiques sur Q, Exper. Math. 5 (1996), 119–130.
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Modeling families of L-functions
David W Farmer∗

Abstract
We discuss the idea of a “family of L-functions” and describe various

methods which have been used to make predictions about L-function
families. The methods involve a mixture of random matrix theory and
heuristics from number theory. Particular attention is paid to families
of elliptic curve L-functions. We describe two random matrix models
for elliptic curve families: the Independent Model and the Interaction
Model.

1 Introduction

Using ensembles of random matrices to model the statistical properties of a
family of L-functions has led to a wealth of interesting conjectures and results
in number theory. In this paper we survey recent results in the hopes of
conveying our best current answers to these questions:

1. What is a family of L-functions?

2. How do we model a family of L-functions?

3. What properties of the family can the model predict?

In the remainder of this section we briefly review some commonly studied
families and describe some of the properties which have been modeled using
ideas from random matrix theory. In Section 2 we provide a definition of “fam-
ily of L-functions” which has been successful in permitting precise conjectures,
and we briefly describe how to model such a family. In Section 3 we discuss
families of elliptic curve L-functions and show that there is an additional sub-
tlety which requires us to slightly broaden the class of random matrix models
we use. Then in Section 4 we discuss how to go beyond the leading-order terms
which random matrix theory can model, and how one can avoid using random
matrix theory when modeling a family of L-functions.

If you only care about elliptic curves and their L-functions you can safely
skip to Section 3.

I thank Brian Conrey, Nina Snaith, Matt Young, and Steven J. Miller for
many helpful conversations.

∗Work supported by the American Institute of Mathematics and by the Focused Research
Group grant (0244660) from the NSF. This paper is an expanded version of a talk given at
the workshop “Clay Mathematics Institute Special week on Ranks of Elliptic Curves and
Random Matrix Theory” held at the Isaac Newton Institute, February 2004.
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1.1 A quick history of families

The idea that collectively the zeros of a single L-function behave in a manner
that can be modeled statistically started with Montgomery’s [Mon] work on the
pair correlation of zeros of the zeta-function. Combined with the large-scale
numerical calculations of Odlyzko [Odl], this provided convincing evidence
that, to leading order, the local statistics of the zeros of the zeta-function,
suitably rescaled, were the same as those of large random unitary matrices.

A similar collective behavior was noted long ago and is termed the “q-
analogue” for Dirichlet L-functions. That is, results about all Dirichlet L-
functions mod q look just like results for the Riemann ζ-function in t-aspect.
For example, the formulas for moments of |ζ( 1

2
+ it)| and |L(s, χ)| are identical

but for replacing t by q. Another early example of collective behavior is the pair
correlation of zeros of quadratic Dirichlet L-functions [OS1]. Clearly something
interesting is going on.

The idea of a family of L-functions with an associated symmetry type
began with the work of Katz and Sarnak [KSa]. They consider families of
function field L-functions, where in this case a “family” of L-functions is the
set of L-functions associated to a set of curves having certain properties. Here
the collection of curves must be “natural” in the sense that the monodromy
group of the family ties it all together. They show that to leading order the
statistics of the (normalized) zeros of these L-functions, when averaged over the
family, are the same as the statistics of the (normalized) eigenvalues of random
matrices chosen from a classical compact group. Here the matrices are chosen
uniformly with respect to Haar measure, and the size of the matrices scales
with the conductor of the L-function.

For global L-functions there does not (yet?) exist an analogue of “mon-
odromy”, but it still has been found that to naturally occurring families one
can associate a classical group of matrices. The zeros of the L-functions have,
to leading order, the same statistics as the eigenvalues of a randomly chosen
matrix from the group. And the appropriately rescaled critical values of the
L-functions have, to leading order, the same distribution as the “critical val-
ues” of the characteristic polynomials of the matrices from the group, chosen
uniformly with respect to Haar measure. The correspondence between the ma-
trices and the L-functions involves equating the eigenvalue spacing with the
zero spacing, or equivalently setting the matrix size equal to the conductor of
the L-function. See Section 2.4 for more details.

After the work of Katz and Sarnak there quickly appeared many exam-
ples of L-functions families behaving in a manner predicted by random matrix
theory. Some of the families considered were: L-functions associated to holo-
morphic cusp forms (in either weight or level aspect); Dirichlet L-functions (ei-
ther all or quadratic); and various twists or symmetric powers of L-functions.
Low-lying zeros were considered by Iwaniec, Luo, and Sarnak [ILS], Rubin-
stein [Rub], Özlük and Snyder [OS2], and others. Moments were consid-
ered by Iwaniec and Sarnak [IS], Kowalski, Michel, and VanderKam [KMV],
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Soundararajan [S], and others.
There is an important distinction between the predictions for zeros of L-

functions and the predictions for moments. For the zeros there is a natural
way to normalize: rescale so that the average spacing is 1. This rescaling
involves the conductor of the L-function and the degree of the characteristic
polynomial, and this is the source of the principle that one chooses the size of
the random matrix to equal the (logarithm of the) conductor of the L-function.
With these normalizations one obtains accurate predictions for the leading-
order behavior of statistics of zeros of L-functions. However, in addition to
its zeros a polynomial is determined by an overall scale factor. So one may
hope to use the characteristic polynomials to model the L-functions, but there
will be a correction factor that does not come from random matrix theory.
The use of the characteristic polynomial to model the L-function was begun
by Keating and Snaith [KS1]. The first situation which was well understood
is the moments of L-functions, for which there are explicit predictions for the
arithmetic scale factor. See [CG, CF, KS2].

2 What is a family?

There does not yet exist an adequate definition of “family of L-functions”.
An attempt is made in [CFKRS] to define a family axiomatically, and we will
describe that definition here. In that definition the axioms are chosen so that
it is possible to produce a plausible conjecture for the critical moments of the
family.

Complete details and many examples are in [CFKRS], so we will just high-
light the key features of that definition of a family. The main idea is that one
starts with a fixed L-function and a family of “characters”, and the family
of L-functions is produced by twisting the fixed L-function by the family of
characters. Note that here the term character is used to cover more general
classes of functions than just Dirichlet characters.

2.1 L-functions

We wish to define a “family of L-functions”, so first we have to give the defi-
nition we will use for “L-function”. The definition of an L-function which we
give below is slightly different than what is known as the “Selberg class,” but
it is conjectured that the two are in fact equal.

Let s = σ + it with σ and t real. An L-function is a Dirichlet series

L(s) =
∞∑

n=1

an
ns
, (2.1)

with an = Oε(n
ε) for every ε > 0, which has three additional properties.

Analytic continuation: L(s) continues to a meromorphic function of finite order
with at most finitely many poles, and all poles are located on the σ = 1 line.
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Functional equation: There is a number ε with |ε| = 1, and a function γL(s)
of the form

γL(s) = P (s)Qs

w∏

j=1

Γ(1
2
s+ µj), (2.2)

where Q > 0, <µj ≥ 0, and P is a polynomial whose only zeros in σ > 0 are
at the poles of L(s), such that

ξL(s) := γL(s)L(s) (2.3)

is entire, and
ξL(s) = εξL(1− s), (2.4)

where ξL(s) := ξL(s) and s denotes the complex conjugate of s .
The number w is called the degree of the L-function. That number will

also appear in the Euler product.

Euler product: For σ > 1 we have

L(s) =
∏

p

w∏

j=1

(1− γp,jp−s)−1, (2.5)

where the product is over the primes p, and each |γp,j| equals 1 or 0.
Note that L(s) ≡ 1 is the only constant L-function, the set of L-functions is

closed under products, and if L(s) is an L-function then so is L(s+ iy) for any
real y. An L-function is called primitive if it cannot be written as a nontrivial
product of L-functions. Throughout this paper we assume all L-functions are
primitive, although we usually omit the word “primitive.”

Conductor: Associated to an L-function is its conductor, a number which mea-
sures the “size” of the L-function. The paper [CFKRS] introduced a refined
notion of conductor which, to leading order, is the logarithm of the usual no-
tion of conductor. The refined conductor is necessary in order to have any hope
of conjecturing the full main term in a general mean value of the L-function.
Write the functional equation in asymmetric form:

L(s) = εXL(s)L(1− s), (2.6)

where XL(s) =
γL(1− s)
γL(s)

. Then the refined conductor of L(s), denoted c(L),

is given by c(L) = |X ′L(1
2
)|.

2.2 Families of characters

By a family of characters we mean a collection of arithmetic functions F ,
where each f ∈ F is a sequence f(1) = 1, f(2) = a2,f , f(3) = a3,f , . . . whose
generating function

Lf (s) =
∞∑

n=1

an,f
ns

=
∏

p

v∏

j=1

(1− βp,jp−s)−1 (2.7)



Modeling families of L-functions 57

is a (primitive) L-function such that the collection {Lf : f ∈ F} has some nice
properties. If we order the L-functions Lf by conductor c(f), then the data
{Q; µ1, . . . , µw} in the functional equation of Lf should be monotonic functions
of the conductor, and the counting function M(X) := #{f ∈ F | c(f) ≤ X}
should be nice. The final condition on the family of characters is the existence
of an orthogonality relation among the f ∈ F . Specifically, we require that if
m1, . . . ,mk are integers then the average

δ`(m1, . . . ,mk) := lim
X→∞

M(X)−1
∑

f∈F
c(f)≤X

f(m1) . . . f(m`)f(m`+1) . . . f(mk)

(2.8)
exist and be multiplicative. That is, if (m1m2 . . .mk, n1n2 . . . nk) = 1, then

δ`(m1n1,m2n2, . . . ,mknk) = δ`(m1, . . . ,mk)δ`(n1, . . . , nk). (2.9)

See Section 3.1 of [CFKRS] for more details.

2.3 Families of L-functions

Now we create a family of L-functions by starting with a fixed L-function

Lg(s) =
∞∑

n=1

an,g
ns

=
∏

p

w∏

j=1

(1− γp,jp−s)−1. (2.10)

Then the elements of our L-function family L(F) are the Rankin-Selberg con-
volutions

L(s, f) = Lf×g(s) =
∏

p

v∏

i=1

w∏

j=1

(1− βp,iγp,jp−s)−1

=
∞∑

n=1

an,f×g
ns

. (2.11)

(There may be some issues with the local factors at the bad primes). Note
that if w = 1 or v = 1 then

L(s, f) =
∞∑

n=1

an,fan,g
ns

. (2.12)

And in particular if Lg is the Riemann zeta-function, then L(s, f) = Lf (s).
The point of this definition of “family” is that the axioms provide the

necessary ingredients to apply the recipe in [CFKRS] to conjecture the full
main term in the shifted Kth moment

M(X)−1
∑

c(f)≤X

∏

1≤k≤K
L(1

2
+ αk), (2.13)
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or more generally a shifted ratio [CFZ]

M(X)−1
∑

c(f)≤X

∏

1≤k≤K

L(1
2

+ αk)

L(1
2

+ δk)
. (2.14)

Having such a mean value is sufficient to conjecture just about anything you
would like to know about the zeros and the value distribution of the L-function.
See [CS] for examples.

Note that some families are unions of increasingly large pieces having the
same conductor. Examples are the Dirichlet L-functions and the L-functions
associated to holomorphic cusp forms (in either weight or level aspect). For
those families it is believed that the heuristics for moments will produce a
reasonable conjecture for the average over a fixed (large) conductor.

Although this definition of “family” is useful for certain applications, it
lacks the concreteness of the function field case. In particular, there does not
yet exist an analogue of monodromy for such a family, and computing the
symmetry type of the family is not straightforward. We discuss this in the
next section.

2.4 Modeling a family of L-functions

Given a family of L-functions one can ask questions about its value distribution
or about the distribution of its zeros. In most cases current technology is not
sufficient to answer the interesting questions, so the next hope is to find a
plausible conjecture. Only recently have such conjectures been found, and the
new ingredient is to use random matrices to model the family of L-functions.

The idea is to associate a classical compact group, U(N), Sp(2N), O(N),
SO(2N), or SO(2N + 1), to the family. The local statistics of the eigenvalues
should agree, to leading order, with the corresponding local statistics of the
zeros of the L-functions. And, to leading order and after compensating by an
arithmetic constant, the value distribution of the characteristic polynomial

Λ(z) = ΛA(z) = det(I − A∗z) =
N∏

n=1

(
1− ze−iθn

)
(2.15)

near the point z = 1 should agree with the value distribution of the L-functions
near the critical point. Here A is an N × N unitary matrix A and A∗ is the
Hermitian conjugate of A, so the eigenvalues of A lie on the unit circle and are
denoted by eiθn .

In the above correspondence the size of the matrix is set equal to the
conductor of the L-function. (Actually, to an integer close to the conductor,
but to leading order such discrepancies do not matter). To see why this is a
natural choice, consider the functional equation satisfied by the characteristic
polynomial:

ΛA(z) = (−1)N det(A)zNΛA∗(z
−1). (2.16)
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If we identify (−1)N det(A) with ε and zN with XL(s) then we have a perfect
correspondence between the functional equations of ΛA(z) and L(s), the unit
circle playing the role of the critical line and z = 1 the critical point. Just
as for L-functions, we define the conductor as d

dz
zN evaluated at the critical

point, so N is the conductor. Note that identifying conductors is equivalent to
equating the average spacing between the zeros. Values near the critical point
are modeled using the correspondence Λ(e−z)↔ L(1

2
+ z).

It remains to identify the matrix group which corresponds to the family.
From the functional equation it is almost possible to determine the group: the
only ambiguity is to distinguish between SO(2N) and Sp(2N). At one time
it was thought that this case could be easily resolved because SO(2N) fami-
lies always arise as “half” of a larger family, the other half being modeled by
SO(2N + 1). On the other hand Sp(2N) families do not have such a “part-
ner”. A counterexample to that hope is described in [MD2]. But even if that
approach were viable, it is unsatisfactory because it relies on the fact that the
symmetry type can be found among a small list of possibilities. Fortunately,
there are other methods. One possibility is to compute the 1- and 2-level den-
sities of the family. This usually can be done rigorously for functions with
small support, and this is sufficient to distinguish among the classical compact
groups. But again we are relying on the fact that the symmetry type can be
found on a short list. That objection can be overcome if one can conjecture
the level densities in the full range, but that can be quite difficult in practice.
Another possibility is to use the recipe in [CFKRS] to conjecture the moments
of the family. This unambiguously identifies the group, and it also can tell you
if the family is not modeled by one of those groups. Unfortunately, it is not
clear that the recipe in [CFKRS] can be applied to all interesting families of
elliptic curve L-functions, such as the family F3 given in (3.6).

2.5 Summary of modeling

Just to be pedantic, we note the following answers to the questions posed at
the beginning of Section 1:

1. A family of L-functions is a set of L-functions, ordered by conductor,
which is built in a particular way from a family of characters. The count-
ing function of the family should be nice, and the data in the functional
equation should be monotonic functions of the conductor.

2. A family is modeled by associating to it a classical compact matrix group.
The specific compact group can usually be determined by computing the
level densities of the low-lying zeros of the family, or by conjecturing
the moments of the family. The size of the matrices scales with the
(logarithmic) conductor of the L-functions.

3. To leading order the rescaled local zero statistics of the family are the
same as the rescaled local eigenvalue statistics of the group. To leading
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order the critical moments of the family equal the critical moments of the
characteristic polynomials, up to a multiplicative arithmetic constant.
For the family we average over the L-functions of conductor less than X,
and then let X → ∞. For the matrix groups the averages are with
respect to Haar measure.

The modeling described above will produce leading order asymptotics. To
make more precise predictions requires other methods, which are described in
Section 4.

3 Elliptic curve families

For the remainder of the paper, E is an elliptic curve over Q, with root number
wE = ±1, and L(s, E) is the L-function associated to E normalized so that
s = 1

2
is the critical point. If F is any family of elliptic curves we write

F = F+ ∪ F− where F+ or F−, respectively, are the curves E ∈ F with
wE = +1 or wE = −1. We write Ea,b for the curve y2 = x3 + ax+ b.

Most of the information in this section can be found in recent papers by
Steven J. Miller and Eduaro Dueñez [M, MD1, MD2], Nina Snaith [Sn1, Sn2]
and Matthew Young [Y1, Y2, Y3]. The author of this paper is just trying
to convey the current understanding of the relationship between families of
elliptic curve L-functions and random matrix theory: he makes no claim to
any of the ideas presented here.

3.1 Families with a given rank

The following question is not well posed:
What is the correct random matrix model for the L-functions of a family

of elliptic curves having a prescribed rank r?
The question is not well posed because there are (at least) two reasonable

models, both of which seem to be appropriate for certain families of elliptic
curves. We will first examine the simplest case of rank r = 1.

Consider the following families of rational elliptic curves:

F1(X) = {Ea,b : |a| ≤ X
1
3 , |b| ≤ X

1
2} (3.1)

and
F2(X) = {Ea,b2 : |a| ≤ X

1
3 , b2 ≤ X

1
2}. (3.2)

Note that the point (0, b) on Ea,b2 almost always has infinite order, so almost
all of the curves in F2 have rank at least 1.

Let’s consider F−1 and F−2 . In both families we have L( 1
2
, E) = 0 because

wE = −1. However, for E ∈ F−2 we could have said L( 1
2
, E) = 0 because

rank(E) ≥ 1. The fact that the zero at L( 1
2
, E) for E ∈ F2 was constructed,

instead of just arising from parity considerations, has a profound influence on
the behavior of the L-function near the critical point.
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To understand the influence of the critical zero, we first consider the dis-
tribution of L′(1

2
, E), which assuming standard conjectures is nonzero for al-

most all curves in our wE = −1 families. We have the following conjectures
from [Y2]:

1

|F−1 (X)|
∑

E∈F−1 (X)

L′(1
2
, E)k ∼ c1(k)(logX)k(k+1)/2 (3.3)

while
1

|F−2 (X)|
∑

E∈F−2 (X)

L′(1
2
, E)k ∼ c2(k)(logX)k(k−1)/2 (3.4)

As the formulas show, the behavior at the critical point is different for the
two families, even though both families could be described as “a rank 1 family
of elliptic curves.” In particular, we see that the derivative L′(1

2
, E) tends to

be smaller for E ∈ F−2 . This can be explained by the tendency for the low-
lying zeros of L(s, E) to be closer to the critical point for E ∈ F−2 . That is,
F−2 should have more low-lying zeros, which will cause the L-function to stay
small near the critical point, and so its derivative will also be small. To make
this idea precise we consider the 1-level density of the zeros.

Let 0 < γE,1 ≤ γE,2 ≤ γE,3 ≤ · · · denote the imaginary parts of the zeros
of L(s, E) in the upper half of the critical strip. Note that we have omitted
the zero(s) at the critical point. The one-level density of the family F (X) is
defined to be the function W1 which satisfies

1

|F (X)|
∑

E∈F (X)

∑

j

φ(γE,j) ∼
∫
φ(t)W1(t)dt, (3.5)

as X →∞, for nice functions φ. That is, W1 measures the density of the zeros
of the family.

The observation about the relative size of L′(1
2
, E) can be restated as: the

one-level density for the family F−2 should be more concentrated near 0 than
the one-level density for the family F−1 . By using random matrix theory and
some other ideas we explain below, it is possible to produce a precise conjecture
for the one-level densities of these families. These are given in Figure 3.1. The
functions are rescaled so that the average spacing between zeros is 1. In the
next section we explain where those conjectures came from.

3.2 Two models for two kinds of families

The plots in Figure 3.1 are familiar. The plot on the left is the rescaled one-
level density of the eigenvalues of matrices from the group SO(2N + 1), in the
limit as N → ∞. The plot on the right is the rescaled one-level density of
the eigenvalues of matrices from the group SO(2N), in the limit as N → ∞.
Given those plot, what are our models for the two families?
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Figure 3.1: Conjectured one-level density of the noncritical L-function zeros of
the family F−1 (left) and F−2 (right).

Consider the following ways to make a polynomial f(z) which has real
coefficients, all its zeros on the unit circle, and (almost surely a simple) zero
at z = 1:

• The characteristic polynomial of a matrix in SO(2N + 1)

• (z − 1) times the characteristic polynomial of a matrix in SO(2N)

It should be clear that those two examples will have the one-level densities
pictured in Figure 3.1. These examples are the simplest cases of the two most
commonly studied higher rank families of elliptic curve L-functions, which we
now describe.

Suppose ET is a curve y2 = x3+a(T )x+b(T ) of rank r over Q(T ). Consider
the following two families of rational elliptic curves:

F3(X) = {Ea,b : |a| ≤ X
1
2 , |b| ≤ X

1
3 , rank(E) ≥ r} (3.6)

and
F4(X) = {Et : |a(t)| ≤ X

1
2 , |b(t)| ≤ X

1
3 , t ∈ N}. (3.7)

As in our rank 1 example, we have F4(X) ⊂ F3(X). Again we consider the
subfamilies according to the sign of wE. Let F be either of the above rank r
families. If r is odd then almost all the curves in F− have rank r, and almost
all the curves in F+ have rank r + 1. If r is even then the F+ curves have
rank r and the F− curves have rank r + 1. It is conjectured that F+

4 and
F−4 are approximately the same size provided E has at least one place of
multiplicative reduction. See [H]. If r is even then it is possible that F+

3 and
F−3 are approximately the same size.

We describe the two models which are believed to correspond to these
families. The names for these models was coined by Steven J. Miller.
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3.3 Selecting to have zeros

The Interaction Model
We are modeling a family that arises by restricting a much larger family

to a subfamily having at least r zeros at the critical point. A matrix model
for this family can be described as follows: start with SO(M) where M = 2N
or 2N + 1 depending on whether we are modeling F+

3 or F−3 , and restrict to
those matrices having 1 as an eigenvalue of multiplicity at least r. That is,
you take matrices in SO(M) and drag r zeros to the critical point.

There are some bad things about this model. First, it is a set of matrices,
but it is not a group. And while it is a perfectly well-defined set, it is a measure
zero subset of SO(M), so there is no canonical way to restrict Haar measure
to it.

One solution, which has been analyzed by Snaith [Sn1] and Dueñez [D,
MD1] is to first restrict to those matrices which have r eigenvalues in [−ε, ε],
and then let ε→ 0. The resulting measure is the same as one obtains by taking
Haar measure on SO(M), formally substituting θ = 0 for r of the eigenvalues,
and then omitting those terms which vanish identically. With the eigenvalues
given by eiθj , the induced measure on that set is

C(M, r)
M∏

j=1

(1− cos θj)
r

∏

1≤j<k≤M
(cos θj − cos θk)

2dθ1 · · · dθM (3.8)

where C(M, r) is a normalization constant.
It is instructive to look at the one-level density for such matrices. The

one-level density is given by [Sn1, MD1]

π2

2
θ

(
J2
r− 3

2
(θπ) + J2

r− 1
2
(θπ)− 2r − 1

θπ
Jr− 1

2
(θπ)Jr− 3

2
(θπ)

)
. (3.9)

There is some numerical evidence [MD1] that this model is accurate. For
this model it is possible to compute the critical moments of the characteristic
polynomials [Sn1], but it does not seem that all the ingredients are available
to use the recipe in [CFKRS] to conjecture the moments of the family.

Note that when r = 0 we recover SO(2N) and when r = 1 we have
SO(2N + 1).

3.4 Imposing zeros

The Independent Model
We are modeling a family that has an rth order zero at the origin which

arises from an explicit construction. A model for this situation can be found
by assuming that the extra critical zeros are just inserted at the critical point,
and all the other zeros ignore them. That is, start with a matrix in SO(M)
where M = 2N − r or 2N + 1 − r depending on the parity of r and the sign
of wE. Then the polynomial which models the L-function is the characteristic



64 D. W. Farmer

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

Figure 3.2: One-level density for SO(M), restricted to have exactly r eigenvalues
at θ = 0, for r = 1, 2, 3, 4, 5.

polynomial of the matrix, multiplied by (x − 1)r. The one-level density only
depends on the parity of r and the sign of wE, and will be one of the functions
shown in Figure 3.1.

One can phrase the model strictly in terms of matrices by saying that the
model is given by the group

(
Ir×r

SO(M)

)
(3.10)

where Ir×r is the r×r identity matrix and M = 2N−r or 2N +1−r is chosen
according to the parity of r and the sign of the functional equation.

There is numerical evidence [MD1], level density calculations [M, MD1, Si,
Y1] and conjectures for moments [Y2] that this model gives accurate predic-
tions for some specific families.

3.5 Some issues

It is worth repeating that the above models, even if they are correct, are only
intended to capture leading-term asymptotics. Computer experiments [MD1]
find that the low lying zeros of the family F4 exhibit some anomalous behavior
which presumably will disappear when larger examples are computed. It is
entirely possible that family F3 is a union of families of the form F4, and
this may contribute to a bias in those numerics. In families of type F4 the
generators of the set of rational points have very small height, and this may
also introduce a bias. That is, the heights of the generators are on the order
of the logarithm of the conductor, while it is more typical to have the heights
as large as a power of the conductor. See Silverman [Si2], Chapter 10, for a
discussion of heights of generators.

It is possible that more accurate predictions of the one-level density (using
methods described in the next section) will show better agreement with the
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data. Those methods are also able to give extremely precise predictions for
the moments of the L-functions [Y2], and these give support to the models.

It is not clear that these families of elliptic curves give rise to families
of L-functions as described in Section 2. For the purpose of conjecturing the
moments of the family (which is why that definition of ‘family’ was developed),
the key property is the orthogonality relation (2.8). For specific families of
type F4 it should be possible to evaluate such sums. The result is likely to be
quite complicated, as in [Y2]. A subtle problem is that the parameter X in the
elliptic curve families is approximately the discriminant, not the conductor. By
Szpiro’s conjecture the logarithm of the discriminant is within a factor of 6 of
the logarithm of the conductor, so it is possible that ordering by discriminant
is almost as good as ordering by conductor. It seems reasonable to model by
setting N , the size of the matrix, equal to logX, since what else would you
choose? If that choice is correct it suggests that X is close to the discriminant
most of the time. This has been shown for some families [Y1].

One can cook up an elliptic curve family which presumably is a hybrid of
the models described here: take a rank r family of type F4 and restrict to those
curves having rank at least r+2. If one makes the reasonable assumption that
the “extra” zeros created by this process do not interact with the original r
zeros imposed at the critical point, then one can use methods similar to [CKRS]
to predict how many curves are in the restricted family. I am not advocating a
reckless proliferation of elliptic curve models, but am merely noting that even
if the two models described here are correct and can be refined to predict lower
order terms, they may not cover all families of interest.

In Figure 3.3 one can see that if r is large then you are unlikely to find
noncritical zeros close to the critical point. The name “repulsion” has been
given to this phenomenon. The logic behind the name is that the “lowest
zero” is further from the critical point than it would be if there were not a
multiple critical zero. Unfortunately, the “lowest zero” is not a well defined
object. If you drag the lowest zero to the critical point then the other zeros
follow it toward the critical point, and at the moment you increase the order
of the critical zero there becomes a new “lowest zero”. If there is an rth order
critical zero and you count zeros correctly, then the “lowest zero” is actually
the (r+1)st zero, and it is likely to be closer to the critical point than a typical
(r+1)st zero. In other words, the word “attraction” more accurately describes
the situation! There is no reason to change the current terminology, but keep
in mind that in the model where one restricts to those matrices having multiple
eigenvalues at 1, the other eigenvalues have actually moved toward the critical
point.

4 Refined modeling

Random matrix theory is useful for making leading-order asymptotic predic-
tions about families of L-function. To understand the finer behavior of the
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family one must use heuristic techniques from number theory.
There are two main refinements to the leading term asymptotics. First,

L-function families are ordered by conductor, and we use the conductor to
determine the appropriate size matrices for our model. There will be a dis-
crepancy between the limiting behavior for large matrices and the behavior for
finite size matrices. For some quantities, such as the nearest neighbor spacing
of the zeros/eigenvalues, it is difficult to see the difference between the asymp-
totics of the distribution and the distribution for moderate size matrices. For
other quantities, such as the value distribution, for any computable range there
is a notable difference between the limiting quantity and the values that can
be computed. See Keating and Snaith [KS1], for a spectacular example con-
cerning the value distribution of < log ζ( 1

2
+ it). By a theorem of Selberg that

is Gaussian in the limit t→∞, but for finite t it differs from a Gaussian in the
same way as the characteristic polynomial of an appropriately sized random
unitary matrix.

The second issue is the fact that there are lower order terms, and the lower
order terms for L-functions involve arithmetic factors, while the lower order
terms of random matrices do not. Thus, the general shape of expressions from
random matrix theory can reveal what to expect for L-functions, but the arith-
metic “correction terms” must be determined in some other manner. For zero
spacings there are no arithmetic corrections in the leading order terms. For
moments of L-functions the leading order correction terms are fairly straight-
forward to determine [CG, CF, KS2]. Just about everything else is quite subtle
and one needs sophisticated number-theoretic methods in order to make sen-
sible conjectures.

For moments of L-functions such conjectures are covered in detail
in [CFKRS]. Matt Young [Y2] used these heuristics to compute the full
main term for various families of elliptic curve L-functions. Those conjec-
tures give (3.3) and (3.4) as special cases. Thus, the heuristics appear to
correctly handle a variety of interesting families. (For the family F3 in (3.6)
our current understanding of the distribution of the coefficients ap does not
seem adequate to conjecture the moments of the family. Even finding the
leading order arithmetic factor seems difficult in this case. However, random
matrix calculations [Sn1] predict the general shape of the moments.)

For quantities involving zero statistics, moments are insufficient and one
needs averages of ratios of the L-functions. This is addressed in [CFZ]. For
example, the expected value of the ratio

L(1
2

+ α, f)

L(1
2

+ β, f)
(4.1)

is sufficient to determine the one-level density of the family L(s, f), including
the lower order correction terms due to arithmetic effects. See [CS] for many
examples. It should be possible to use these methods to conjecture the ra-
tio (4.1) for various higher rank elliptic curve families, and thus give a precise
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conjecture for the one-level density. As of this writing this has not been done,
but probably it will have been done by the time this paper appears in print.

In summary, by choosing the matrix group and the size of the matrices
appropriately, and with the appropriate arithmetic correction factor, a family
of L-functions can be modeled by the characteristic polynomials of a collection
of matrices. The example of elliptic curve L-functions where the elliptic curves
are selected to have large rank shows that the collection of matrices may not be
a group. In order to capture the lower order terms one must use heuristics from
number theory which do not explicitly involve random matrix theory. Those
heuristics also recover the leading order behavior which previously required
random matrix theory.
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[OS1] A. Özlük and C. Snyder, Small Zeroes of Quadratic L -Functions, Bull.
Aust. Math. Soc. 47 (1993) pp. 307–319
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Analytic number theory and ranks of
elliptic curves

Matthew P. Young

Abstract

We discuss recent applications of analytic number theory to the
study of ranks of elliptic curves.

1 Introduction

This article is meant to be a sampling of techniques and interesting results on
the (analytic) ranks of elliptic curves. The main result discussed is an upper
bound on the average rank of the family of all elliptic curves. The bound
obtained is less than 2, which implies (by work of Kolyvagin [Kol]) that a
positive proportion of elliptic curves have finite Tate-Shafarevich group and
algebraic rank equal to analytic rank. The synergy here between algebraic
and analytic methods is extremely pleasant.

We also discuss the problem of showing that a large number of elliptic curve
L-functions do not vanish at the central point. Many of the techniques used
in bounding the average rank are useful in this direction.

Our exposition is meant to be somewhat colloquial. The interested reader
should consult [Y1] and [Y2] for all technical details.

In this volume E. Kowalski has given a broad overview of what is known
on ranks of elliptic curves in families. We shall refer to his article [Kow]
for general background knowledge on elliptic curves. We have attempted to
minimize overlap with his article without loss of coherence of this paper.

We shall assume the Generalized Riemann Hypothesis throughout this ar-
ticle.

1.1 Acknowledgements

I would like to thank Henryk Iwaniec for supporting my last-minute decision
to attend the workshops. I also thank the organizers of the Newton Institute
program for inviting me to attend.

1.2 Notation

To be definite we set our notation here. We shall differ slightly from Kowalski
in that we normalize our L-functions to have central point 1/2.
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We suppose E is an elliptic curve over Q with conductor N and L-function

L(s, E) =
∏

p

(
1− λE(p)

ps
+
ψN(p)

p2s

)−1

,

where here ψN is the principal Dirichlet character (mod N). With our nor-
malization

√
pλ(p) ∈ Z and the Hasse bound is

|λ(p)| 6 2,

|λ(n)| 6 d(n).

If E has minimal Weierstrass equation y2 = g(x) then for p 6= 2 we have

λE(p) = − 1√
p

∑

x (mod p)

(
g(x)

p

)
. (1.1)

2 Bounding the average rank

The prototypical result of interest in this article is Theorem 2.9 of [Kow],
namely Brumer’s upper bound of 2.3 for the average rank of the family of all
elliptic curves [B]. In what follows we will show how Theorem 2.9 is proved
and discuss how improvements may be made. We concentrate on a handful
of families for which the best results are known and which exhibit interesting
behavior.

2.1 The tools

The main tool for studying the zeros of an L-function is the explicit formula.
We refer to §2.5 of [Kow] for a thorough discussion of the explicit formula and
the approximate functional equation. We prefer to use the ‘Fourier’ form of
the explicit formula (as opposed to the form of Proposition 2.11 of [Kow]).
See Theorem 5.12 of [IK] for our preferred form. In addition, we make a
preliminary cleaning by trivially estimating various terms.

Proposition 2.1. Let φ be an even Schwartz-class function whose Fourier
transform has compact support (so φ extends to an entire function). Let E
be an elliptic curve with conductor N and L-function L(s, E) with nontrivial
zeros 1/2 + iγ. Then for any X > 1 we have

∑

γ

φ

(
γ

logX

2π

)
=

1

2
φ(0) + φ̂(0)

logN

logX
− 2

∑

p

λE(p)

p1/2

log p

logX
φ̂

(
log p

logX

)

− 2
∑

p

λE(p2)

p

log p

logX
φ̂

(
2 log p

logX

)
+O

(
1

logX

)
,

the implied constant depending on φ only.
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We see that taking X close to N scales the zeros properly when the curves
vary over a family. It is useful to have freedom in choosing X rather than
taking X = N since the conductor may have irregular behavior. In all cases
we shall assume N � X.

Let D(E;φ) be the quantity on the left-hand side of Proposition 2.1 and
likewise set

Pk(E;φ) = −2
∑

p

λE(pk)

pk/2
log p

logX
φ̂

(
k log p

logX

)

for k = 1, 2.
The quantity D(E;φ) can be interpreted as the density of zeros near the

central point. The philosophy of Katz and Sarnak ([KS1], [KS2]) makes pre-
dictions on the asymptotic behavior of D(E;φ) as E varies over a family. By
comparison with the function field case as well as with the family of all weight
2 level q newforms (see [ILS]) we expect a family of elliptic curves to have
orthogonal symmetry. Let FX be a family of elliptic curves with parameter X
as in §2.1 of [Kow]. Then the natural prediction is that

1

|FX |
∑

E∈FX
D(E;φ) ∼ 1

2
φ(0) + φ̂(0),

as X → ∞ for any φ satisfying the conditions of Proposition 2.1. In practice
there will be a restriction on the size of the support of φ̂ of the type supp(φ̂) ⊂
(−ν, ν) for some ν > 0 (with an abuse of language we will say that φ̂ has
support up to ν). The 1

2
φ(0) term should be interpreted as corresponding

to zeros that occur at the central point. The factor 1/2 ostensibly appears
because half of all elliptic curves should vanish by virtue of the sign in the
functional equation. See [He1] for recent work indicating how the root number
behaves in families (one part of his work is reducing the problem to a classical
conjecture of Chowla on the behavior of the Möbius function at polynomial
values, strongly indicating that the root number is equidistributed between
+1 and −1 in ‘typical’ families). The fact that the coefficient of φ(0) is not
larger than 1/2 predicts that vanishings to order 2 or higher are rare (i.e. that
such curves do not constitute a positive percentage of elliptic curves). The

φ̂(0) term is interpreted as capturing the aggregate of zeros of the L-functions
in the family. It is highly desired to reduce this interference by taking φ with
φ(0) large and φ̂(0) small, because then one can extract more quantitative
information about the central zeros.

On the assumption of GRH for L(s, E) we have γ ∈ R and we may take
φ non-negative with φ(0) = 1 so that the left-hand side in Proposition 2.1 is
at least ords= 1

2
L(s, E). This observation is the starting point for obtaining

an upper bound on the average rank of a family of elliptic curves (assuming
GRH). The goal then is to obtain an upper bound on the average of the right-
hand side of Proposition 2.1. There is motivation for obtaining the asymptotic
value of D(E;φ) because it tests the Katz-Sarnak predictions. Proving an
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upper bound can sometimes be a simpler task than getting the asymptotic
due to difficulties with the size of the conductor.

There are three terms to average in the explicit formula; we address each
in turn. A trivial estimation shows P2(E;φ) � 1; virtually any cancellation
in this sum shows that P2(E;φ) = o(1). The GRH for the symmetric-square
L-function attached to E shows

P2(E;φ)� log logN

logX
.

It is possible to treat this term unconditionally by virtue of averaging over the
family; we refer to Proposition 2.12 and surrounding discussions of [Kow] for
a more extensive exposition of such results.

For the application of bounding the average rank we require a bound of the
type ∑

E

logN

logX
6
∑

E

(1 + o(1)). (2.1)

In practice it is exceedingly easy to ensure this condition because the conductor
can be trivially bounded from above (by the absolute value of the discriminant
for example). Obtaining an asymptotic formula for the average of the loga-
rithm of the conductors is a much more difficult task. Usually this amounts
to controlling the frequency of large square divisors of a polynomial. Current
technology (the square-free sieve) is strong enough for polynomials of degree
3 or less [He2].

The most difficult term to treat is P1(E;φ) (from now on we set P (E;φ) =
P1(E;φ)). The GRH for L(s, E) implies

P (E;φ)� Xε,

so it is necessary to beat the Riemann hypothesis on average! In general we
obtain results of the type

∑

E

P (E;φ) =
∑

E

(c+ o(1)) (2.2)

for an integer c. Here c should be interpreted as a kind of ‘forced’ rank; this
terminology is vague, however if the family is given by specializations of a fixed
elliptic surface then c would be the rank of the surface. See [N] and [RS] for
further explanation and partial results.

Assuming we have obtained the previous inequalities, we therefore have

1

|FX |
∑

E∈FX
ords=1/2L(s, E) 6 1

2
+ c+ φ̂(0) + o(1)

as X →∞. To obtain the best upper bound for the average rank it is necessary
to choose φ with φ̂(0) minimized subject to φ(0) = 1 and supp φ̂ ⊂ [−ν, ν].
Taking the Fourier pair

φ(x) =

(
sin πνx

πνx

)2

, φ̂(y) =
1

ν

(
1− |y|

ν

)
, |y| < ν
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gives optimal results. See [ILS], Appendix A for a derivation. Technically
speaking, φ is not Schwartz-class but by taking suitable approximations this
issue is easily rectified. The conclusion is that we obtain the upper bound on
the average rank r of

r 6 1

2
+ c+

1

ν
+ ε. (2.3)

Clearly, obtaining (2.2) with large ν is extremely desirable for then the upper
bound on r improves.

2.2 The setup

To be concrete, let us list some examples of families of elliptic curves. In all
cases we have Ea,b : y2 = ga,b(x) where ga,b(x) is a cubic polynomial in x. We
also locate a � A and b � B for certain values of A and B depending on X.
Precisely, we set

F1 :ga,b = x3 + ax+ b A = X1/3 B = X1/2

F2 :ga,b = x3 + ax+ b2 A = X1/3 B = X1/4

F3 :ga,b = x(x2 + ax− b) A = X1/4 B = X1/2

F4 :ga,b = x(x− a)(x+ b) A = X1/3 B = X1/3.

The various restrictions on the sizes of a and b with respect to X are imposed to
maximize the number of curves in the family subject to the constraint (2.1).
For example, Ea,b ∈ F1 has discriminant ∆ = −16(4a3 + 27b2) and N |∆.
Having a � X1/3, b � X1/2 gives |∆| � X. The upper bound (2.1) is therefore
trivial. The asymptotic is not overly difficult for this family; see [Y1], Lemma
5.1 for a proof.

From an analytic point of view it is best to have families as large as possible.
The families Fi are quite large and are well-suited for averaging. The family F1

is essentially the family of all elliptic curves, F2 is a large family consisting of
positive (algebraic) rank curves, F3 has torsion group Z/2Z, and F4 has torsion
group Z/2Z × Z/2Z. Certain curves in the family F4 have a distinguished
position in the proof of Fermat’s Last Theorem. Another interesting feature
of F4 is that Helfgott [He1] has shown that the root number is equidistributed
in this family.

Families of quadratic twists have been very popular for many researchers.
These families are conducive for study because of their simple nature in many
regards, with many quantities being controlled by a Dirichlet character (i.e.
the root number and the λ(p)’s). Quadratic twists also have different reduction
than ‘typical’ elliptic curves, because almost all prime divisors of the conduc-
tors of the twisted curves are of additive reduction. A drawback of quadratic
twist families is that they have small size (having � X1/2 curves of conductor
� X). We advocate for more study of the above families Fi as well as other
such variants.
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Often it can be good to make slight restrictions on the various families in
order to avoid quadratic twists or to ensure that the Weierstrass equations are
minimal. For instance, by taking a and b such that there is no prime p such
that p2|a and p3|b we achieve both goals with F1. For technical reasons we
omit this restriction; introducing it involves only minor alterations.

In order to aid in the analysis we introduce a smooth, compactly supported
cutoff function w : R2 → R satisfying w(x, y) = 0 whenever x 6 0 or y 6 0.
The following quantity P(F , φ) is our central object of interest

P(Fi, φ) = −2
∑

p

∑

a

∑

b

λa,b(p)

p1/2

log p

logX
φ̂

(
log p

logX

)
w

(
a

A
,
b

B

)
. (2.4)

Here we have used the shorthand λa,b(p) = λEa,b(p) and also suppressed the
dependence of λa,b(p) on the family Fi. The concrete formula (1.1) allows the
use of classical techniques of analytic number theory for the study of (2.4).

The compact support of φ̂ means that a restriction of the type p 6 Xν holds
in (2.4). An important challenge is to estimate the sum with ν large.

In what follows we shall treat the sum (2.4) with increasing degrees of
sophistication.

2.3 Completing the sum

We begin by applying Poisson summation in a and b (mod p) to the sum (2.4)
(noting of course that λa,b(p) is periodic in a and b (mod p)). We have

∑

a

∑

b

λa,b(p)w

(
a

A
,
b

B

)
(2.5)

=
AB

p2

∑

h

∑

k

ŵ

(
hA

p
,
kB

p

) ∑∑

α,β (mod p)

λα,β(p)e

(
αh+ βk

p

)
.

By the rapid decay of ŵ we may assume h � (p/A)1+ε and k � (p/B)1+ε.
Therefore, if p� min(A,B) the only terms that can possibly contribute any-
thing come from h = k = 0. It is possible to show that

∑∑

α,β (mod p)

λα,β(p) =

{
0, i = 1, 3, 4

−p(p− 1)p−1/2, i = 2.

Hence we see

P(Fi, φ) =

{
o(AB), i = 1, 3, 4

ABŵ(0, 0)φ(0) + o(AB), i = 2,
(2.6)

provided p is sufficiently small with respect to A and B. The additional main
term for i = 2 arises from the fact that the curve y2 = x3 + ax+ b2 always has
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the point (0, b), which is almost always of infinite order by a simple use of the
Lutz-Nagell criterion [Si].

We shall consider these initial bounds as trivial. The challenge is to obtain
the same result for p larger with respect to A and B. One can make imme-
diate improvements by completing the sum over a or b only, corresponding to
whichever of A and B is larger. This minor alteration allows one to take p as
large as max(A,B) rather than min(A,B).

To progress further we compute the complete sum on the right hand side
of (2.5) for arbitrary h and k. We have

∑∑

α,β (mod p)

λα,β(p)e

(
αh+ βk

p

)
(2.7)

=





−εpp
(
k
p

)
e
(
−h3k

2

p

)
, i = 1

−p3/2δp(h)δp(k)− εpp
(
−h
p

)
e
(
k4h

3
2

6

p

)
+ p1/2, i = 2

−εpp
(
h
p

)
e
(
h2k
p

)
, i = 3

−εpp
(
hk(h−k)

p

)
, i = 4,

where εp is the sign in the Gauss sum (i.e. εp = 1 if p ≡ 1 (mod 4), εp = i,
p ≡ 3 (mod 4)) and δp(n) is the indicator function of p|n. See Appendix A for
these computations.

The upshot of these computations is that we have obtained savings in the
nonzero frequencies (i.e. those terms with h, k 6= 0). In addition, the explicit
form of the above sums allows for additional savings in the summations over h,
k, and p. If we apply (2.7) to P(F , φ) and do not exploit any such cancellation
then we obtain results that are slightly less trivial than before. The quality of
these results rests entirely upon the fact that there is square-root cancellation
in (2.7) (after accounting for the main term for i = 2 of course).

For the record, the results obtained at this point are that P(Fi, φ) is given
by (2.6) provided 




ν 6 5/9, i = 1

ν 6 7/18, i = 2

ν 6 1/2, i = 3

ν 6 4/9, i = 4.

This bound for i = 1 is originally due to Brumer [B]. Note that this is the
limit of the power of algebraic geometry because to go further requires varying
primes and/or estimating very short sums. We do not mean that algebraic
geometry cannot help in the further study of these sums, but rather that any
application would be ingenious (Burgess’ method is an outstanding example).
The technology of analytic number theory is suited for treating such sums.

It is wise to consider philosophically whether the application of Poisson
summation in (2.5) is advantageous. When p is too large with respect to A
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and B then completing the sum modulo p leads to a dual sum that is longer
than the original sum (the dual sum is the summation over h and k). The
conventional wisdom says that Poisson summation should be applied when
the dual sum becomes shorter. Nevertheless, with the above four families it
appears always to be advantageous to complete the sums. The reason is that
the expression in (2.7) is in closed form that allows for extra savings. We have
access to

∑
a

∑
b λa,b(p) only by ‘opening’ the sum λa,b(p) as in (1.1). Opening

this sum is costly because it is necessary to recover the Hasse bound.
Notice that the expressions in (2.7) for i = 1, 2, and 3 are remarkably

similar (ignoring the main term for i = 2 of course). It should not be surprising
that a method of estimation for one of these families should also treat the
others, but of course the quality of the results may depend on the family.
The case i = 4 is of a very different character than the other families and
unsurprisingly it requires different techniques of estimations. One can attempt
to study any family of elliptic curves using these techniques. It is desirable
to find large families where the analog of (2.7) can be explicitly computed so
that additional savings are obtainable.

In the following sections we discuss the cases i = 1 and i = 4 in greater
depth. For the record, the best results obtained so far are

ν <





7/9, i = 1

23/48, i = 2

2/3, i = 3

2/3, i = 4.

(2.8)

Actually, the case i = 3 has not been worked out in full detail but it is likely
that the method sketched in the following section does give the result 2/3.
Notice that any improvement in these results for i = 3 or i = 4 shows that a
positive proportion of the corresponding families with prescribed torsion have
rank 6 1. The quality of these results should be gauged against the size of
the family; the respective families have X5/6, X7/12, X3/4, and X2/3 curves of
conductor 6 X.

2.4 Sketching the method for the family of all elliptic
curves

Recall that we are interested in estimating the following sum

P(F1, φ) = 2
AB

logX

∑

p

∑

h

∑

k

εp

(
k

p

)
e

(
−h3k

2

p

)
log p

p3/2
(2.9)

× φ̂

(
log p

logX

)
ŵ

(
hA

p
,
kB

p

)
.

The requirement is P(F1, φ) = o(AB). Heath-Brown [H-B1] has obtained this
bound for support ν < 2/3. Since his method is of interest we briefly sketch
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the arguments. To begin, write

|P(F1, φ)| � AB

logX

∑

k

∑

p

∣∣∣∣∣
∑

h

e

(
−h3k

2

p

)
log p

p3/2
φ̂

(
log p

logX

)
ŵ

(
hA

p
,
kB

p

)∣∣∣∣∣ .

Next extend the summation over p to all integers m coprime with k. Using
Cauchy’s inequality to reverse the order of summation, we are led to bound
an exponential sum of the type

∑

k

∑

m

∑

h1

∑

h2

e

(
−(h3

1 − h3
2)k

2

m

)
g(h1, h2, k,m),

where g is a certain test function that locates the variables in appropriate
ranges.

An application of the reciprocity law

u

v
+
v

u
≡ 1

uv
(mod 1), (2.10)

where (u, v) = 1, uu ≡ 1 (mod v), and vv ≡ 1 (mod u) effectively reduces the
modulus in the exponential to k2 instead of m. The sum to estimate becomes

∑

k

∑

m

∑

h1

∑

h2

e

(
(h3

1 − h3
2)m

k2

)
g1(h1, h2, k,m),

where

g1(h1, h2, k,m) = e

(−h3
1 + h3

2

mk2

)
g(h1, h2, k,m).

In the typical range where m ≈ P , h1 ≈ h2 ≈ P/A, and k ≈ P/B we have

−h3
1 + h3

2

mk2
� 1

so that the exponential of this quantity has small derivatives and can be safely
absorbed into the test function g as our notation indicates.

Finally, apply Poisson summation in m (mod k2). We treat the nonzero
frequencies trivially and consider the completed sum

C =
∑

x (mod k2)

e

(
ux

k2

)
,

where u = h3
1−h3

2. Here C is a Ramanujan sum that will be large only when u
and k2 have a large greatest common divisor. Using fairly intricate elementary
arguments it is possible to bound the frequency of such occurences. Notice that
it is obvious from the expression (2.9) that some analysis of the greatest com-
mon divisor of h3 and k2 is necessary to obtain cancellation due to oscillation
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of the exponential factor. It is believed that no perverse behavior occurs due
to a frequently large greatest common divisor; nevertheless, in practice it re-
quires technical arguments to handle this difficulty. This completes our sketch
of Heath-Brown’s method. Note that the Riemann Hypothesis is not used in
the estimations of P(F1, φ) although of course it is used in the application of
bounding the average rank of the family.

This value ν = 2/3 gives the bound of 2 for the average rank. Notice that
any improvement on the value 2/3 shows that the average rank is less than 2,
and hence that a positive proportion of elliptic curves have order of vanishing
6 1. By the work of Kolyvagin this shows that a positive proportion of elliptic
curves have finite Tate-Shafarevich group and algebraic rank equal to analytic
rank! For these reasons, any support ν > 2/3 is a natural goal for any family
of elliptic curves. The support range of 2/3 also appears to be a barrier in
the estimations; note that ν < 2/3 is allowable for i = 3, 4 in (2.8) as well
as in Heath-Brown’s result for i = 1. With the family of all elliptic curves
it appears that there are many natural methods of estimation that lead to a
support value of 2/3. It is these examples that give anecdotal evidence that
there is an innate barrier in extending the support beyond 2/3.

The author has shown that P(F1) = o(AB) holds for any ν < 7/9. This
gives the upper bound of 25/14 = 1.78... for the average rank. We shall sketch
some of the main ideas behind the proof of this result. See the original paper
[Y1] for the full technical details.

Rather than considering (2.9) we study the following variant

S(H,K,P ) =
∑

p

∑

h

∑

k
(h,k)=1

(
k

p

)
e

(
−h3k

2

p

)
g

(
h

H
,
k

K
,
p

P

)
,

where g is a smooth, compactly-supported function satisfying g(x, y, z) = 0 if
x 6 0, y 6 0, or z 6 0. Here P is an arbitrary parameter and H = P/A, K =
P/B. The sum S(H,K,P ) differs from (2.9) in two essential ways. The first
difference is that h and k are fixed to be close to their maximal sizes (in (2.9)
we have the restriction h � (P/A)1+ε, k � (P/B)1+ε). Different techniques
of estimation are necessary for small values of h and/or k. Nevertheless, the
main barrier to obtaining larger values of ν comes from the estimations with
H = P/A and K = P/B. The second difference is that we have imposed the
restriction (h, k) = 1. When h and k are close to their maximal sizes then the
coprimality restriction is for simplicity only; when the variables are smaller
some technical difficulties do arise but they do not pose an essential barrier.
The factor εp is safely ignored because it only depends on p (mod 4). The sum
S(H,K,P ) represents a ‘pure’ form of (2.9) unobscured by technical details.
The necessary bound is S(H,K,P )� P 3/2−ε.
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As in the work of Heath-Brown we use the reciprocity law (2.10) to give

S(H,K,P ) =
∑

p

∑

h

∑

k
(h,k)=1

(
k

p

)
e

(
h3p

k2

)
g1 (h, k, p) ,

where

g1(h, k, p) = e

(
h3

pk2

)
g

(
h

H
,
k

K
,
p

P

)
.

Again notice that H3 = PK2 (using A3 = B2 = X) so we may safely absorb
the exponential factor into the test function.

To separate the variables we use the expansion of additive characters into
multiplicative characters, namely the formula

e
(a
n

)
=

1

ϕ(n)

∑

χ (mod n)

τ(χ)χ(a),

valid for (a, n) = 1. Assuming (h, k) = 1 allows for a simple application of this
formula; in the general situation one can impose coprimality by factoring out
greatest common divisors. We have

S(H,K,P ) =
∑

k

1

ϕ(k2)

∑

χ (mod k2)

τ(χ)
∑

p

∑

h

χ(p)

(
k

p

)
χ3(h)g1 (h, k, p) .

Because the variables h and p are separated we may use the Riemann hy-
pothesis for Dirichlet L-functions to obtain square root cancellation in the
summations over h and p, as long as the characters are nonprincipal. The
bound we obtain from the nonprincipal characters is

S(H,K,P )� H1/2P 1/2K2Xε,

which is � P 3/2−ε as long as P � X7/9−ε. This reveals the limit of the
method. The loss of savings from the nonprincipal characters is made up for
by their rarity as well as from savings in the size of the Gauss sums of principal
characters (τ(χ0) becomes a Ramanujan sum when χ0 is principal).

It is important to realize that the above method does not work for all ranges
of H, K, and P . For instance, when k is small the exponential factor

e

(
h3

pk2

)

has large derivatives that cannot be safely ignored. The reciprocity law chang-
ing the modulus from p to k2 becomes more advantageous the smaller k be-
comes; the tradeoff is that the exponential factor ‘correction’ becomes more
difficult to treat. See Lemma 5.8 of [Y1] for the desired bound on the summa-
tion over h and p for general k.
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Many different methods of estimation come into play in different ranges;
for instance, Weyl’s method is used to estimate sums of the type

∑

h

e

(
h3m

n

)
.

Also notice the extensive use of reciprocity laws, namely (2.10) as well as
quadratic reciprocity to view (k/p) as a character with argument p.

2.5 The family of curves with torsion group Z/2Z×Z/2Z
In this section we investigate F4 as we did the family of all elliptic curves in
Section 2.4.

The analogous ‘pure’ sum is the following

S(H,K,P ) =
∑

h

∑

k

∑

p

(
hk(h+ k)

p

)
g

(
h

H
,
k

K
,
p

P

)
,

where g is as in the previous section and H = K = P/A. As before, the
necessary bound is S(H,K,P )� P 3/2−ε. Clearly this sum S is very different
from the corresponding sum for F1.

So far the best known method allows P as large as X2/3−ε, which gives
the upper bound of 2 for the average rank. It is of great interest to make any
improvement to this result no matter how small the increment. Notice that
when P = X2/3 we have H = K = P 1/2.

We sketch the argument giving support 2/3 − ε. We use two different
methods depending on whether hk(h+k) is a square. In the typical case where
hk(h + k) is not a square we may use the Riemann hypothesis for Dirichlet
L-functions to obtain square-root cancellation in the summation over p. When
hk(h + k) is a square there is no cancellation in the summation over p but
there is a lot of extra savings due to the rarity of such h and k. If (h, k) = 1
we must have that each of h, k, and h+ k are squares and are therefore led to
the classical problem of counting primitive Pythagorean triples! The general
case leads to the problem of counting solutions to

l1x
2 + l2y

2 = l3z
2

uniformly in l1, l2, and l3. See Lemma 8.4 of [Y1] for a full treatment of the
problem of counting how often hk(h+ k) is a square.

The sum S(H,K,P ) displays beautiful symmetry and exhibits the interac-
tions between addition and multiplication.

2.6 Open problems and directions for improvement

Any improvements on the constants in (2.8) would be a major achievement.
The cases i = 3 and i = 4 are especially enticing because the structure of
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the sums seem less complicated than for the family of all elliptic curves. The
applications of obtaining average rank strictly less than 2 provide a lot of
motivation. The family F2 has been studied by Iwaniec (work in progress) in
an attack on the Landau-Siegel zero. There are various barriers in his work,
but one of them essentially amounts to obtaining ν > 1/2 in (2.8).

It would be good to have more examples of large families of elliptic curves
where the analog of (2.7) may be computed explicitly. Notice that the best
known results for F3 and F4 are the same even though the former family is
larger than the latter (F3 has X3/4 curves of conductor 6 X whereas F4 has
X2/3 curves of conductor 6 X). Sometimes the particular structure of a family
can provide for surprisingly good results.

One may be interested in removing the assumption of the generalized Rie-
mann hypothesis from the work. Recall that we required the Riemann hypoth-
esis in our application of the explicit formula in order to ignore any zeros not
at the critical point. It should be possible using zero-density estimates to un-
conditionally handle zeros that are too far from the critical line. Kowalski and
Michel [KM1], [KM2] have carried out this procedure for weight 2 level q new-
forms, obtaining the bound of 6.5 for the average order of vanishing. Kowalski,
Michel, and VanderKam [KMVdK] improved this constant to less than 1.2 by
studying the central values of derivatives of the family of L-functions. Un-
fortunately there is little hope of applying their methods to the family of all
elliptic curves because of difficulties with the root number in applications of
the approximate functional equation.

Along similar lines, one might try to remove the use of GRH for Dirichlet
L-functions from the treatment of the family of all elliptic curves and obtain
support larger than 2/3.

3 Nonvanishing results

The question of how many L-functions in a certain family vanish at the central
point is of great interest and has a variety of applications. Many people have
studied this problem for different families, including Dirichlet L-functions ([So],
[IS1]), weight k Hecke L-functions of level N ([IS2], [KMVdK]), and quadratic
twists of a fixed elliptic curve ([PP], [H-B1]), to name a handful of examples.

In this section we discuss the nonvanishing question for the family of all
elliptic curves; in many ways the techniques are similar for the other families
studied in the previous section, though there are many new difficulties.

3.1 Methods and results

To begin, we discuss the classical analytic method for proving nonvanishing re-
sults for a general family of L-functions. There are essentially two ingredients,
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namely showing bounds of the type
∑

f∈F
L(1/2, f) > A, (3.1)

and ∑

f∈F
L2(1/2, f) 6 B. (3.2)

From these two inequalities and a simple application of Cauchy’s inequality
we immediately obtain

∑

f∈F
L(1/2,f)6=0

1 > A
2

B .

It turns out that L(1/2, f) occasionally takes large enough values so that the
best possible value of B is of the order A logA, so that this method barely fails
to prove a positive proportion of central values do not vanish. By introducing
a mollifier M(f) (an approximation to L(1/2, f)−1), it becomes possible to
show ∑

f∈F
L(1/2, f)M(f)� A (3.1’)

and ∑

f∈F
L2(1/2, f)M 2(f)� A. (3.2’)

and prove that a positive proportion of central values are nonzero. The ex-
istence of such a mollifier is not a priori obvious and picking a mollifier that
optimizes the implied constants can be a tricky problem.

The main barrier to proving a nonvanishing result for the family of all
elliptic curves is the lower bound (3.1). The fundamental difficulty to proving
such a lower bound is the complete lack of knowledge of the distribution of the
root number. So for no one has ruled out the possibility that the root number
is −1 for almost all elliptic curves, which obviously causes the lower bound to
be unapproachable. It is therefore necessary to make some sort of hypothesis
on the distribution of the root number. A feasible goal is to minimize the
severity of this hypothesis.

The analytic tool to access L(1/2, E) is of course the approximate func-
tional equation (see Proposition 2.10 of [Kow]), which states

L(1/2, E) =
∞∑

n=1

λE(n)√
n
g
( n
U

)
+ εE

∞∑

n=1

λE(n)√
n
g
( n
V

)
,

where UV = N , εE is the root number, and g is a certain smooth function
with rapid decay (for example, g(x) = exp(−2πx) is a popular choice).

Thus it is desirable to estimate sums of the type

∑

E∈F

∑

n

λE(n)√
n
g
( n
U

)
. (3.3)
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Notice the resemblance with (2.4). This new sum is more difficult to study
than (2.4) because a workable formula for λ(n) is not available for general n.
For n prime we have (1.1), but for higher powers of p we must use the Hecke
relations to determine a formula. For instance (assuming (p,N) = 1)

λ(p2) = λ2(p)− 1,

λ(p3) = λ3(p)− 2λ(p),

and in general λ(pk) is a polynomial in λ(p) of degree k (it is a Tchebyshev
polynomial of the second kind). By treating the squarefree and squarefull parts
of n separately it is possible to minimize this difficulty. For instance, in [Y2]
the following is shown.

Lemma 3.1. For an integer n let (n)2 be the squarefull part of n, that is,
the product of prime powers exactly dividing n to order 2 or higher. Let φ(x)
be a smooth, compactly supported function vanishing for x > 2 and satisfying
φ(x) + φ(x−1) = 1. Then on GRH we have

∑

n

λE(n)√
n
g
( n
U

)
=
∑

n

λE(n)√
n
g
( n
U

)
φ

(
(n)2

Xε

)
+O(X−δ),

where δ > 0 depends on ε > 0 only, and where N � X.

This result reduces the problem to estimating (3.3) except where n runs
over almost squarefree integers. When n is squarefree we do have the formula

λE(n) = µ(n)
1√
n

∑

x (mod n)

(
g(x)

n

)

so it is possible to proceed using similar techiques to those in Section 2. Notice
that the presence of the Möbius function here means that estimating (3.3) with
n squarefree is equivalent in practice to estimating (2.4).

Using the previous lemma and the techniques of Section 2 it is possible to
show

Theorem 3.2. Let ν < 7/9 and set U = Xν. Let F1 be the family of all elliptic
curves as in Section 2.2 with corresponding smoothing function w. Then for
some c > 0 we have

∑

Ea,b∈F1

∑

n

λE(n)√
n
g
( n
U

)
w

(
a

A
,
b

B

)
∼ c|F1| (3.4)

as X →∞.

The important feature of this result is the large allowable size for U with
respect to X. The proof of the result follows the method sketched in Section
2.4 but there are many new technical difficulties arising from the presence
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of higher prime powers dividing n (no matter how small they may be). The
requirement ν < 7/9 is essentially equivalent to (2.8). A large part of this work
has been to apply the methods used to prove (2.8) to the proof of Theorem 3.2.
Similar results most certainly hold for the other families Fi, i = 2, 3, 4 using
similar methods although the details have not been carried out. The study of
these families of elliptic curves it not conducive to general theories.

The constant c is a certain arithmetical factor that can be expressed as an
absolutely convergent Euler product involving the average values of λ(pk).

To obtain a lower bound of the type (3.1) it is then necessary to control

R =
∑

E

εE
∑

n

λE(n)√
n
g

(
n

VE

)
,

where UVE = N . By taking U very large it shortens this sum. Nevertheless,
it is hopeless to attack this sum using the methods of harmonic analysis as in
Section 2. The reason is that the root number is fundamentally incompatible
with harmonic analysis. To elaborate, one may show under the restriction
4a3 + 27b2 squarefree that the root number of the curve y2 = x3 + ax + b is
given by

εE = µ(4a3 + 27b2)
( a

3b

)
χ4(b)ε2(−1)a+1,

where χ4 is the primitive Dirichlet character modulo 4 and ε2 is the local root
number at 2. There is no nice formula for ε2 because there are many cases to
consider [Ha]. Bounding R is very difficult because it requires strong cancella-
tion arising from the variation in sign of the Möbius function evaluated at the
thin sequence of values of 4a3 + 27b2. While there has been tremendous recent
progress on the polynomials x2 + y4 and x3 + 2y3 ([FI], [H-B2], respectively),
equidistribution is not yet known for our required polynomial. Furthermore,
it is required that there be a lot of cancellation (power savings) in the sum;
even in the simpler case of

∑
n6Y µ(n) the Riemann hypothesis (or at least

a zero free region for Re s > 1 − δ for some δ > 0) is required to obtain
power-savings in Y . It is not clear how GRH would help for the sequence of
values of 4a3 +27b2 because it is required to identify an appropriate L-function
associated to this sequence.

Based on the expected variation of the sign of the root number we make
the following

Conjecture 3.3. Let ν < 7/9 and set VE = X−νN . Then

∑

E

εE
∑

n

λE(n)√
n
g

(
n

VE

)
� (AB)1/2+ε.

Using Theorem 3.2 and this Conjecture we have the lower bound (3.1) with
A � AB.

The upper bound (3.2) can be treated in a number of ways. It may be
possible to obtain unconditional results because the difficulties with the root
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number can perhaps be avoided by positivity arguments. This is an interesting
direction for further research. Since we already have been assuming GRH we
instantly have (via Lindelöf) the upper bound (3.2) with B � ABX ε.

3.2 Future progress

To make progress on this problem it is necessary to understand the distribution
of the root number. A starting point would be to show that

∑

a6A

∑

b6B
µ(4a3 + 27b2) = o(AB),

which already appears to be worthy challenge.

Perhaps a better approach would be to use the approximate functional
equation with U > N so that the effect of the root number becomes implicit
in the long sum of Dirichlet coefficients. It is not clear how the root number is
captured by this sum (the Möbius function of the discriminant is nowhere to
be seen when studying the sums of Dirichlet coefficients). Any work showing
such a connection, even conjecturally, would be of interest.

In a related, yet different, direction, it would be good to have quantitative
vanishing results. Based on the conjectured rarity of rank 2 and higher curves,
statistically all vanishing central values should arise from εE = −1. Perhaps
it is possible to show εE = −1 for many elliptic curves without necessarily
showing that the root number is equidistributed. Helfgott’s result on the
equidistribution of the root number for the family y2 = x(x− a)(x+ b) shows
that at least X2/3 curves of conductor � X vanish at the central point.

A Computing the complete character sums

This appendix is devoted to the rather pleasant task of computing the sums
(2.7). We let Ti(h, k, p) be the sum on the left hand side of (2.7).

A.1 The family of all elliptic curves

Here we carry out the case i = 1.

By definition,

T1(h, k; p) = − 1√
p

∑

x (mod p)

∑

α (mod p)

∑

β (mod p)

(
x3 + αx+ β

p

)
e

(
αh+ βk

p

)
.
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The change of variables β → β − x3 − αx gives

T1(h, k; p) = − 1√
p

∑

x (mod p)

e

(−x3k

p

) ∑

α (mod p)

e

(
α(h− xk)

p

)

×
∑

β (mod p)

(
β

p

)
e

(
βk

p

)

= −εpp
(
k

p

)
e

(−h3k̄2

p

)
,

as claimed.

A.2 The large positive rank family

This is the case i = 2. We have

T2(h, k; p) = − 1√
p

∑

x (mod p)

∑

α (mod p)

∑

β (mod p)

(
x3 + αx+ β2

p

)
e

(
αh+ βk

p

)

= − 1√
p

∑

α

∑

β

(
β2

p

)
e

(
αh+ βk

p

)

− 1√
p

∑

x6=0

∑

α

∑

β

(
x3 + αx+ β2

p

)
e

(
αh+ βk

p

)

= T0 + T ′2,

say. We easily have
T0 = −p1/2δp(h)(pδp(k)− 1)

where δp(n) is the characteristic function of p|n.
The sum T ′2 is, after the linear change of variables α→ α−x2−β2x̄, given

by

T ′2 = − 1√
p

∑

x6=0

(
x

p

)∑

β

e

(−hβ2x̄+ βk − hx2

p

)∑

α

(
α

p

)
e

(
αh

p

)

= −εp
(
h

p

)∑

x6=0

(
x

p

)
e

(−hx2

p

)∑

β

e

(−hxβ2 + xkβ

p

)
(from β → xβ).

To evaluate the summation over β we apply the formula

∑

x (mod p)

e

(
ax2 + bx

p

)
=





εp
√
p
(
a
p

)
e
(
−āb24̄
p

)
if (a, p) = 1,

p if a ≡ b ≡ 0 (mod p),

0 otherwise.

(A.1)

We obtain

T ′2 = −ε2
pp

1/2

(
h2

p

)(−1

p

)∑

x6=0

e

(−hx2 + k2h̄4̄x

p

)
.
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Applying (A.1) again we obtain

T ′2 = −p1/2

(
h2

p

)(
εp
√
p

(−h
p

)
e

(
h̄3k42̄6

p

)
− 1

)
.

Gathering terms and simplifying finishes the calculation.

A.3 The family with 2-torsion

Here we do the case i = 3. Using the change of variables β → −β + αx + x2

we have

T3 = − 1√
p

∑

x

∑

α

∑

β

(
x(x2 + αx− β)

p

)
e

(
αh+ βk

p

)

= − 1√
p

∑

x

(
x

p

)
e

(
x2k

p

)∑

α

e

(
α(h+ xk)

p

)∑

β

(
β

p

)
e

(−βk
p

)

= −εpp
(
h

p

)
e

(−h2k

p

)
,

as desired.

A.4 The family with torsion group Z/2Z× Z/2Z
Using the changes of variables α→ α + x and β → β − x, we get

T4 = − 1√
p

∑

x

∑

α

∑

β

(
x(x− α)(x+ β)

p

)
e

(
αh+ βk

p

)

= − 1√
p

∑∑∑

x,α,β (mod p)

(
xαβ

p

)
e

(−αh+ βk + x(h− k)

p

)

= −ε3
pp

(−hk(h− k)

p

)
= −pεp

(
hk(h− k)

p

)
,

which completes the calculation.
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The derivative of SO(2N + 1)
characteristic polynomials
and rank 3 elliptic curves

N. C. Snaith

Abstract

We calculate the value distribution of the first derivative of char-
acteristic polynomials of matrices from SO(2N + 1) at the point 1,
the symmetry point on the unit circle of the eigenvalues of these matri-
ces. The connection between the values of random matrix characteristic
polynomials and values of the L-functions of families of elliptic curves
implies that this calculation in random matrix theory is relevant to the
problem of predicting the frequency of rank three curves within these
families, since the Birch and Swinnerton-Dyer conjecture relates the
value of an L-function and its derivatives to the rank of the associated
elliptic curve. This article is based on a talk given at the Isaac Newton
Institute for Mathematical Sciences during the “Clay Mathematics In-
stitute Special Week on Ranks of Elliptic Curves and Random Matrix
Theory”.

1 Introduction

1.1 Random matrix theory and number theory

The connection between random matrix theory and number theory began with
the work of Montgomery [27] when he conjectured that the distribution of the
complex zeros of the Riemann zeta function follows the same statistics as the
eigenvalues of a random matrix chosen from U(N) generated uniformly with
respect to Haar measure. This conjecture is supported by numerical evidence
[28] and also by further work [16, 31, 2, 3] suggesting that the same conjecture
is true for more general L-functions. For all these L-functions there is a Gen-
eralized Riemann Hypothesis that the non-trivial zeros lie on a vertical line in
the complex plane. The conjectures mentioned above concern the statistics of
the zeros high on this critical line.

The philosophy of Katz and Sarnak [19, 20] extended the connection with
random matrix theory by proposing that rather than averaging over many
zeros of a given L-function, if the zeros near to the point where the critical
line crosses the real axis are averaged over a family of naturally connected
L-functions, then they will be found to follow the statistics of the eigenvalues
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of one of the three classical compact groups of random matrices: U(N), O(N)
or USp(2N), where again the statistics are computed with respect to the
probability measure given by Haar measure. There is numerical evidence for
this conjecture as well [30], and strong support is given to it by the rigorous
work of Katz and Sarnak [19] in the case of function field zeta functions.

For a review of applications of random matrix theory to questions in number
theory see, for example, [5] or [23].

There has been a series of papers, starting with [22] and continuing with
[6, 18, 17, 21, 8, 7], examining how random matrix theory can be used to predict
the distribution of values of the Riemann zeta function and other L-functions,
either averaged over an interval high on the critical line, or over a family at
the critical point where the critical line crosses the real axis. For large values
of the natural asymptotic parameter, for example the variable ordering the L-
functions within the family, the moments of L-functions are conjectured to split
into a product of an arithmetic contribution, determined by the family being
averaged over, and a component derived from a random matrix calculation -
the corresponding moment of the characteristic polynomial of the matrices in
one of the three groups U(N), O(N) or USp(2N). The asymptotic parameter
on the random matrix side is the dimension of the matrix N and a natural
equivalence can be made between the two.

In the following section we review the results of Conrey, Keating, Rubin-
stein and Snaith [9] which use the random matrix prediction for the leading
order behaviour of moments of L-functions mentioned above to conjecture
the frequency of zeros at the critical point among L-functions in a family
corresponding to quadratic twists of an elliptic curve. With the Birch and
Swinnerton-Dyer conjecture, this result predicts the frequency of curves of rank
two or greater occurring in this family. This work makes use of a discretization
formula [36, 32, 24] relating L-values at the critical point to Fourier coefficients
of half-integral weight forms. See also David, Fearnley and Kisilevsky [12, 13]
for a similar use of random matrix theory to predict frequency of vanishing
at the critical point amongst families of elliptic curve L-functions twisted by
cubic and higher order characters.

The second half of this article presents the random matrix calculation of
the distribution of values of the derivative of characteristic polynomials of
matrices from SO(2N + 1) with Haar measure. We find, at equation (2.20),
that moment of the derivative grows like

M(N, s) :=

∫

SO(2N+1)

|Λ′U(1)|sdUHaar ∼ (2π)s/22−s
2/2 G(3/2)

G(3/2 + s)
N s2/2+s/2,

(1.1)
where ΛU(eiθ) is the characteristic polynomial of U ∈ SO(2N + 1) and G(z)
is the Barnes double gamma function (see 2.11). We also show that the prob-
ability that |Λ′U(1)| < X over U ∈ SO(2N + 1) is, for small X, given by (see
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(2.9) and the sentence following)

2
3
X

3
2f(N), (1.2)

for the function f given at (2.10). With a discretization formula for the deriva-
tives of elliptic curve L-functions at the critical point similar to that of the
L-values themselves, (1.2) could be used to predict the frequency of curves of
rank 3 or higher within a family of quadratic twists. Unfortunately such a
formula for the derivative of L-functions at the critical point is not yet known,
but is being investigated [11], where numerical support is also given to the
validity of the model presented here.

We believe that the model presented in Section 2 should apply to the
L-functions with odd functional equation selected from families of quadratic
twists of elliptic curves for the property that they have a zero of at least
order one at the critical point. However, there has been some very interesting
theoretical work computing the one-level densities of zeros of families of L-
functions selected in a different way (through parametric families of elliptic
curves constructed so that the rank is at least 1) that implies that in that
case the zero at the critical point does not affect the position of nearby zeros
(see [26] and [39]). This does not seem to be a contradiction with the model
proposed here (where the zero at the critical point does repel the other close
by zeros), as the zero statistics are examined over collections of L-functions
selected in very different ways.

The result presented at (1.1) has already been applied by Delaunay in [14]
in order to predict the moments of the orders of Tate-Shafarevich groups and
regulators of elliptic curves with odd rank belonging to a family of quadratic
twists.

This work has been extended [33] to considering subsets of matrices from
SO(N) that are constrained to have n eigenvalues equal to 1, and investigating
the first non-zero derivative of the characteristic polynomial at that point.
When n = 1 this specializes to the result in the present paper.

1.2 Random matrix theory and elliptic curves

We review here the results of [9] which apply random matrix theory to predict-
ing the frequency of vanishing at the critical point of the L-functions in the
family of elliptic curves described below; or equivalently, assuming the Birch
and Swinnerton-Dyer conjecture, the frequency of rank 2 or higher curves oc-
curring in the family of elliptic curves. The motivation for the random matrix
calculations presented in Section 2 is that they may be used similarly to ex-
amine rank 3 curves, see [11].

We consider an L-function (defined by the Dirichlet series and Euler prod-
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uct below when Re s > 3/2)

LE(s) =
∞∑

n=1

an
ns

=
∏

p

Lp(1/ps) =
∏

p|∆

(
1− app−s

)−1
∏

p-∆

(
1− app−s + p1−2s

)−1
,

(1.3)
that is associated to an elliptic curve E over Q

E : y2 = x3 + Ax+B. (1.4)

The coefficients ap, for prime p, are determined by ap = p+1−#E(Fp), where
#E(Fp) counts the number of pairs x, y, with 0 6 x, y 6 p − 1, such that
y2 ≡ x3 + Ax + B ( mod p), plus one for the point at infinity. ∆ is the
discriminant of the cubic x3 + Ax + B. For an extremely clear introduction
to elliptic curves in the context discussed here, see the review paper by Rubin
and Silverberg [29].

A family of quadratic twists of this elliptic curve is formed by

Ed : dy2 = x3 + Ax+B (1.5)

for integer d that are fundamental discriminants, and the corresponding family
of L-functions, ordered by |d|, are

LE(s, χd) =
∞∑

n=1

anχd(n)

ns
, (1.6)

where the characters χd(n) are the Kronecker symbol:

χd(n) =

(
d

n

)
. (1.7)

The original L-function, LE(s), and its twisted companions, LE(s, χd), have
an analytic continuation with the following functional equations [38, 34, 4]

(
2π√
Q

)−s
Γ(s)LE(s) = wE

(
2π√
Q

)s−2

Γ(2− s)LE(2− s) (1.8)

(where Q is the conductor of the curve E and the sign of the functional equa-
tion, wE, takes the value ±1) and, if (d,Q) = 1,

(
2π√
Q|d|

)−s
Γ(s)LE(s, χd) = χd(−Q)wE

(
2π√
Q|d|

)s−2

Γ(2− s)LE(2− s, χd).
(1.9)

See also [10] where there is a similar but more detailed discussion of these
L-functions.

The sign of the functional equation for the twisted L-function LE(s, χd) is
χd(−Q)wE and is either +1 or -1. We consider the family of L-functions

FE+ = {LE(s, χd) : χd(−Q)wE = +1}. (1.10)
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By the philosophy of Katz and Sarnak it is expected that the zeros near the
critical point of such a family have statistics like eigenvalues near 1 of matrices
from SO(2N) with Haar measure. These eigenvalues occur in complex con-
jugate pairs and an eigenvalue at one must have even multiplicity. The even
functional equation of the L-functions forces the same symmetry on their zeros
lying, by the Generalized Riemann Hypothesis, on the line Re s = 1.

In contrast, the low-lying zeros of the L-functions in the family

FE− = {LE(s, χd) : χd(−Q)wE = −1} (1.11)

display the same statistics as SO(2N + 1) eigenvalues near one, since in this
case there is always an eigenvalue at one and it has to have odd multiplicity.

Both numerical and analytical evidence have been given already [9], and we
review the argument here, that random matrix theory can be used to conjecture
the frequency of L-functions vanishing at the critical point in a family such
as FE+ . This is particularly important because of the Birch and Swinnerton-
Dyer conjecture which asserts that the order of the zero of an elliptic curve
L-function at the critical point is equal to the rank of the Mordell-Weil group
of the elliptic curve. (See [29] for a discussion of ranks of elliptic curves and
for a summary of what is known about the occurrence of ranks of various sizes
amongst families of elliptic curves.)

To model values of L-functions from FE+ near the point s = 1, we use the
characteristic polynomials of matrices from SO(2N)

ΛU(eiθ) =
N∏

n=1

(
1− ei(θn−θ)

) (
1− ei(−θn−θ)

)
, (1.12)

evaluated at the point θ = 0. Here e±iθ1 , . . . , e±iθN are the eigenvalues of the
matrix U ∈ SO(2N).

The moments of ΛU(1) =
∏N

n=1

∣∣1 − eiθn
∣∣2 are easily calculated: using

Weyl’s expression [37] for Haar measure on the conjugacy classes of SO(2N)
and a form of Selberg’s integral they are [21]

∫

SO(2N)

ΛU(1)sdUHaar

= 22Ns

N∏

j=1

Γ(N + j − 1)Γ(s+ j − 1/2)

Γ(j − 1/2)Γ(s+ j +N − 1)
(1.13)

≡MO(N, s).

The L-function moments are then conjectured to have the form [6, 21]

ME(T, s) ≡ 1

T ∗

∑

|d|6T
LE(s,χd)∈F

E+

LE(1, χd)
s

∼ as(E)MO(N, s) (1.14)
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for large T . Here N = log T (from equating the density of zeros near the
critical point with the density of the matrix eigenvalues), the sum is over
fundamental discriminants d, T ∗ is the number of terms in the sum and as(E)
is an Euler product that contains arithmetic information specific to the elliptic
curve E and the family of L-functions being averaged over. In practice, it is
often a subset of FE+ that is summed over. If, for example, we select those
L-functions LE(s, χd) in FE+ with d > 0 and further restricted by a condition
on d mod Q, if Q is odd, and on d mod 4Q, if Q is even, then the arithmetic
factor would be

as(E) =
∏

p-Q

(
1− p−1

)s(s−1)/2
(

p

p+ 1

)(
1

p
+

1

2
(Lp(1/p)s + Lp(−1/p)s)

)

×
∏

p|Q

(
1− p−1

)s(s−1)/2 Lp(ap/p)s. (1.15)

See [10] and [8], Section 4.4 for more examples.
Next we consider the distribution of the values of the characteristic poly-

nomials of SO(2N) matrices at the point 1. If PO(N, x)dx is the probability
that the characteristic polynomial of a matrix chosen from SO(2N) with Haar
measure has a value between x and x+ dx, then

PO(N, x) =
1

2πix

∫

(c)

MO(N, s)x−sds

∼ x−1/2h(N) (1.16)

for x → 0+, since for small x the behaviour is dominated by the pole of
MO(N, s) at s = −1/2. Here (c) denotes a path of integration along the
vertical line from c− i∞ to c+ i∞, c > 0.

For large N , h(N) ∼ 2−7/8G(1/2)π−1/4N3/8 (G is the Barnes double gamma
function, defined as [1, 35]:

G(1 + z) = (2π)z/2e−[(1+γ)z2+z]/2

∞∏

n=1

[
(1 + z/n)ne−z+z

2/(2n)
]
, (1.17)

where γ is Euler’s constant. See also (2.11) for more properties of this func-
tion.) Since the probability that an element of SO(2N) has a characteristic

polynomial whose value at 1 is X or smaller is
∫ X

0
PO(N, x)dx, we find that

the the behaviour of this probability for small X and large N is

lim
N→∞

N−3/8 lim
X→0+

(
X−1/2

∫ X

0

PO(N, x)dx
)

= 21/8G(1/2)π−1/4. (1.18)

We see from equation (1.14) that for large d, moments of L-functions are
conjectured to be just as(E) (the prime product) times the random matrix
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moment MO(N, s). If this is true, then we define PE(T, x)dx as the probability,
amongst members of FE+ , that LE(1, χd), for |d| around eN , will take a value
between x and x+ dx, giving

PE(T, x) =
1

2πix

∫

(c)

ME(T, s)x−sds, (1.19)

and an approximation for this probability for small x should be

PE(T, x) ∼ a−1/2(E)x−1/2h(N). (1.20)

Here equating densities of zeros gives N ∼ log T .
But these L-functions are constrained to take only certain discretized val-

ues. The L-values have the form [36, 32, 24]:

LE(1, χd) = κE
cE(|d|)2

√
d

, (1.21)

where the cE(|d|) are integers, the Fourier coefficients of a half-integral weight
form.

The argument now is to suppose that if

LE(1, χd) <
κE√
d

(1.22)

then
LE(1, χd) = 0. (1.23)

Thus we integrate (1.20) as we did (1.16) and so predict that

#{|d| ≤ T : LE(1, χd) = 0, LE(s, χd) ∈ FE+} ∼ 8

3

√
κEa−1/2

T ∗

T 1/4
h(N). (1.24)

with N ∼ log T . However, the c(|d|) are divisible by some predetermined pow-
ers of 2 which change this discretization. To avoid this problem, the conjecture
stated in [9] is restricted to prime discriminants.

Conjecture 1.1. (Conrey, Keating, Rubinstein, Snaith):
Let E be an elliptic curve defined over Q. Then there is a constant cE > 0

such that

∑

p6T
LE(1,χp)=0

LE(s,χp)∈F
E+

1 ∼ cET
3/4(log T )−5/8

(The conjecture was originally stated in [9] with cE > 0, but in fact numer-
ics have revealed that the constant can be zero [10] for certain families. An
explanation of such a case with cE = 0 was given by Delaunay [15].)
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With the Birch and Swinnerton-Dyer conjecture, this suggests that out
of all the elliptic curves associated with L-functions in FE+ with prime dis-
criminant p 6 T (there are of order T/ log T of them) a number of order
T 3/4(log T )−5/8 should have rank two or greater. The T 3/4 has been predicted
previously by Sarnak using different arguments, but random matrix theory
adds more detailed information in the form of the power on the logarithm. For
numerical evidence supporting the conjecture, see [9].

In the next section we will calculate the distribution of values of the first
derivative at the point 1 of the characteristic polynomials from SO(2N +
1) matrices (with Haar measure). The calculation is similar to that leading
to (1.16). If a discretization of values of L′E(1, χd) were known, in analogy
to (1.21), then the following calculation could be used to probe questions of
elliptic curves of rank three occurring in families of quadratic twists (the family
described in (1.5)).

2 Random matrix calculations

In this section we will calculate the probability of the first derivative of a char-
acteristic polynomial of a random (with respect to Haar measure) SO(2N +1)
matrix taking a value less than X at the point 1 on the unit circle. Since the
zeros near the critical point of L-functions in the family FE− are predicted to
have statistics like those of the eigenvalues near 1 of a random SO(2N + 1)
matrix, it is expected that the probability density of values of the derivative of
the characteristic polynomial will model that of the derivative at the critical
point of L-functions in this family.

For a matrix U ∈ SO(2N + 1) the characteristic polynomial looks like

ΛU(eiθ) = (1− e−iθ)
N∏

n=1

(1− ei(θn−θ))(1− ei(−θn−θ)). (2.1)

We will consider the derivative

Λ′U(1) :=
d

dα

[
(1− e−α)

N∏

n=1

(1− eiθn−α)(1− e−iθn−α)

]

α=0

=
N∏

n=1

|1− eiθn |2

= 2N
N∏

n=1

(1− cos θn). (2.2)

We will now calculate the moments and value distribution of Λ′U(1) aver-
aged over SO(2N + 1) with respect to Haar measure. Since Λ′U(1) depends
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only on the eigenvalues of the matrix U , we use the expression

C
N∏

n=1

(1− cos θn)
∏

16j<k6N
(cos θj − cos θk)

2 (2.3)

for the measure on conjugacy classes of matrices with the same set of eigen-
values [37]. The normalisation constant is

C = 2−N
2
N∏

j=1

Γ(N + j) (Γ(j + 1)Γ(1/2 + j)Γ(j − 1/2))−1 . (2.4)

The sth moment of the derivative of the characteristic polynomial is given
by

M(N, s) := C

∫ π

0

· · ·
∫ π

0

|Λ′U(1)|s
N∏

n=1

(1− cos θn)

×
∏

16j<k6N
(cos θj − cos θk)

2dθ1 · · · dθN

= C

∫ π

0

· · ·
∫ π

0

2Ns
N∏

n=1

(1− cos θn)1+s
∏

16j<k6N
(cos θj − cos θk)

2dθ1 · · · dθN

= C2Ns
∫ 1

−1

· · ·
∫ 1

−1

N∏

n=1

(1− xn)1/2+s

(1 + xn)1/2

∏

16j<k6N
(xj − xk)2dx1 · · · dxN . (2.5)

This can be evaluated using a form of Selberg’s integral (for details see
[25]):

∫ 1

−1

· · ·
∫ 1

−1

∏

16j<l6n
|(xj − xl)|2γ

n∏

j=1

(1− xj)α−1(1 + xj)
β−1dxj

= 2γn(n−1)+n(α+β−1)

n−1∏

j=0

Γ(1 + γ + jγ)Γ(α + jγ)Γ(β + jγ)

Γ(1 + γ)Γ(α + β + γ(n+ j − 1))
, (2.6)

if Reα > 0, Reβ > 0 and Reγ > −min
(

1
n
, Reα
n−1

, Reβ
n−1

)
.

We have γ = 1, α = 3/2 + s and β = 1/2, so the integral in equation (2.5)
is

M(N, s) = C22Ns+N2
N∏

j=1

Γ(j + 1)Γ(1/2 + s+ j)Γ(j − 1/2)

Γ(s+N + j)

= 22Ns

N∏

j=1

Γ(1/2 + s+ j)Γ(N + j)

Γ(1/2 + j)Γ(s+N + j)
. (2.7)



102 N. C. Snaith

If the probability that |Λ′U(1)| takes a value between x and x+ dx is given
by P (N, x)dx, then from a standard result in probability (where the contour
of integration is a vertical line with real part equal to c > 0)

P (N, x) =
1

2πix

∫

(c)

x−sM(N, s)ds

=
1

2πix

∫

(c)

x−s22Ns

N∏

j=1

Γ(1/2 + s+ j)Γ(N + j)

Γ(1/2 + j)Γ(s+N + j)
ds. (2.8)

We are particularly interested in the behaviour at small x, and this is
dominated by the nearest pole to zero of the integrand: the pole at s = −3/2
of Γ(1/2 + s+ j). Thus for small x

P (N, x) ∼ x1/2f(N). (2.9)

The probability that |Λ′U(1)| < X for U chosen from SO(2N + 1) with Haar

measure is therefore ∼ 2
3
X

3
2f(N) for small X.

The function f(N), derived from (2.8) by a residue calculation, is given by

f(N) = 2−3N 1

Γ(N)

N∏

j=1

Γ(j)Γ(N + j)

Γ(1/2 + j)Γ(N + j − 3/2)
. (2.10)

For large N the behaviour of f(N) can be determined using the Barnes
G-function [1, 35]:

G(1 + z) = (2π)z/2e−[(1+γ)z2+z]/2

∞∏

n=1

[
(1 + z/n)ne−z+z

2/(2n)
]
, (2.11)

which has zeros at the negative integers, −n, with multiplicity n (n = 1, 2, 3 . . .).
Other properties useful to us are

G(1) = 1, (2.12)

G(z + 1) = Γ(z) G(z),

and furthermore, for large |z|

logG(z + 1) ∼ z2(1
2

log z − 3
4
) + 1

2
z log(2π)− 1

12
log z + ζ ′(−1) +O( 1

z
).(2.13)

Thus
N∏

j=1

Γ(j) = G(N + 1), (2.14)

N∏

j=1

Γ(N + j) =

∏2N
j=1 Γ(j)

∏N
j=1 Γ(j)

=
G(2N + 1)

G(N + 1)
, (2.15)
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Figure 2.1: Figure a) shows the distribution of values of the characteristic
polynomial at the point one of SO(2N) matrices (PO(N, x) from (1.16)) when
N = 5. In comparison, figure b) is the value distribution of the derivative of the
characteristic polynomial for SO(2N +1) matrices, that is P (N, x) from (2.8),
at the point one when N = 5. Figure c) shows in more detail the behaviour
at the origin of figure b) (see equation (2.9)).
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N∏

j=1

Γ(j + 1/2) =
G(3/2 +N)

G(3/2)
(2.16)

and
N∏

j=1

Γ(N + j − 3/2) =
G(2N − 1/2)

G(N − 1/2)
. (2.17)

So we can write

f(N) = 2−3NG(N)G(2N + 1)G(3/2)G(N − 1/2)

G(N + 1)G(N + 3/2)G(2N − 1/2)
(2.18)

and expanding the G-functions for large N gives

f(N) ∼ G(3/2)N
3
8 2−

15
8 π−

3
4 . (2.19)

Note that G(3/2) = Γ(1/2)G(1/2) and Γ(1/2) = π1/2 and [1] G(1/2) =
A−3/2π−1/4e1/821/24 with A = 1.28242713.

Note also that we can use (2.13) to revisit the moment M(N, s) and ex-
amine that asymptotically for large N . This gives us the large N behaviour of
the moments at the point one of the derivative of characteristic polynomials
of SO(2N + 1) matrices. We have

M(N, s) = 22NsG(3/2 + s+N)

G(3/2 + s)

G(3/2)

G(3/2 +N)

G(2N + 1)

G(N + 1)

G(s+N + 1)

G(s+ 2N + 1)

∼ (2π)s/22−s
2/2 G(3/2)

G(3/2 + s)
N s2/2+s/2. (2.20)

3 Discussion

We have shown that the probability that |Λ′U(0)| < X over U ∈ SO(2N +

1) with Haar measure is, for small X, given by 2
3
X

3
2f(N). With a better

understanding of the values taken by the derivative of L-functions associated
to a family of quadratic twists of an elliptic curve this could be used to predict
the frequency of rank three curves occurring amongst the members of such a
family that have an odd functional equation. Some preliminary numerics have
been done to investigate these derivative values, and further work is ongoing
[11].

The result (2.20) was applied by Delaunay in [14] to predict moments of
the orders of Tate-Shafarevich groups and the regulators of elliptic curves
belonging to a family of quadratic twists - a family of type FE− . The Birch and
Swinnerton-Dyer conjecture provides a formula for the first non-zero derivative
of an L-function in terms of various quantities related to the associated elliptic
curve. One of these quantities is the order of the Tate-Shafarevich group, and
another, in the case of the first derivative of L-functions with odd functional
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equation, is the regulator. For families of L-functions with even functional
equation the result (1.14) is used by Delaunay to predict the asymptotic form
of moments of the order of the Tate-Shafarevich group for the associated family
of elliptic curves, and for families with odd functional equation (2.20) was used
to conjecture the form of moments of the regulator.
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Function fields and random matrices
Douglas Ulmer ∗

... le mathématicien qui étudie ces problèmes a l’impression de
déchiffrer une inscription trilingue. Dans la première colonne se
trouve la théorie riemannienne des fonctions algébriques au sens
classique. La troisième colonne, c’est la théorie arithmétique des
nombres algébriques. La colonne du milieu est celle dont la dé-
couverte est la plus récente; elle contient la théorie des fonctions
algébriques sur un corps de Galois. Ces textes sont l’unique source
de nos connaissances sur les langues dans lesquels ils sont écrits;
de chaque colonne, nous n’avons bien entendu que des fragments;
.... Nous savons qu’il y a des grandes différences de sens d’une
colonne à l’autre, mais rien ne nous en avertit à l’avance.

A. Weil, “De la métaphysique aux mathématiques” (1960)

The goal of this survey is to give some insight into how well-distributed sets
of matrices in classical groups arise from families of L-functions in the context
of the middle column of Weil’s trilingual inscription, namely function fields of
curves over finite fields. The exposition is informal and no proofs are given;
rather, our aim is to illustrate what is true by considering key examples.

In the first section, we give the basic definitions and examples of function
fields over finite fields and the connection with algebraic curves over function
fields. The language is a throwback to Weil’s Foundations, which is quite out of
fashion but which gives good insight with a minimum of baggage. This part of
the article should be accessible to anyone with even a modest acquaintance with
the first and third columns of Weil’s trilingual inscription, namely algebraic
functions on Riemann surfaces and algebraic number fields.

The rest of the article requires somewhat more sophistication, although
not much specific technical knowledge. In the second section, we introduce
ζ- and L-functions over finite and function fields and their spectral interpre-
tation. The cohomological apparatus is treated purely as a “black box.” In
the third section, we discuss families of L-functions over function fields, the
main equidistribution theorems, and a small sample of applications to arith-
metic. Although we do not give many details, we hope that this overview will
illuminate the function field side of the beautiful Katz-Sarnak picture.

In the fourth section we give some pointers to the literature for those readers
who would like to learn more of the sophisticated algebraic geometry needed
to work in this area.
∗The author’s research is partially supported by grants from the US National Science

Foundation.
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1 Function fields

In this first section we give a quick overview of function fields and their con-
nection with curves over finite fields. The emphasis is on notions especially
pertinent to function fields over finite fields (as opposed to function fields over
algebraically closed fields), such as rational prime divisors on curves, places of
function fields, and their behavior under extensions of fields and coverings of
curves. The section ends with a Cebotarev equidistribution theorem which is
a model for later more sophisticated equidistribution statements for matrices
in Lie groups.

1.1 Finite fields

If p is a prime number, then Z/pZ with the usual operations of addition and
multiplication modulo p is a field which we will also denote Fp. If F is a finite
field, then F contains a subfield isomorphic to Fp for a uniquely determined p,
the characteristic of F. (The subfield Fp = Z/pZ is the image of the unique
homomorphism of rings Z→ F sending 1 to 1.) Since F is a finite dimensional
vector space over its subfield Z/pZ, the cardinality of F must be pf for some
positive integer f . Conversely, for each prime p and positive integer f , there is
a field with pf elements, and any two such are (non-canonically) isomorphic.
We may construct a field with q = pf elements by taking the splitting field of
the polynomial xq − x over Fp.

It is old-fashioned but convenient to fix a giant field Ω of characteristic p
(say algebraically closed of infinite transcendence degree over Fp) which will
contain all fields under discussion. We won’t mention Ω below, but all fields
of characteristic p discussed are tacitly assumed to be subfields of Ω. Given Ω,
we write Fp for the algebraic closure of Fp in Ω (the set of elements of Ω which
are algebraic over Fp) and Fq for the unique subfield of Fp with cardinality q.
Its elements are precisely the q distinct solutions of the equation xq − x = 0.
With this notation, Fq ⊂ Fq′ if and only if q′ is a power of q, say q′ = qk in
which case Fq′ is a Galois extension of Fq with Galois group cyclic of order k
generated by the q-power Frobenius map Frq(x) = xq.

1.2 Function fields over finite fields

We fix a prime p. A function field F of characteristic p is a finitely generated
field extension of Fp of transcendence degree 1. The field of constants of F
is the algebraic closure of Fp in F , i.e., the set of elements of F which are
algebraic over F. Since F is finitely generated, its field of constants is a finite
field Fq. When we say “F is a function field over Fq” we always mean that Fq

is the field of constants of F .
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Examples:

1. The most basic example is the rational function field Fq(x) where q is a
power of p and x is an indeterminate. More explicitly, the elements of
Fq(x) are ratios of polynomials in x with coefficients in Fq. Its field of
constants is Fq.

2. Let q be a power of p, and let F be the field extension of Fq generated
by two elements x and y and satisfying the relation y2 = x3 − 1. More
precisely, let F be the fraction field of Fq[x, y]/(y2−x3+1) or equivalently
F = Fq(x)[y]/(y2 − x3 + 1). The field of constants of F is Fq. If p > 3,
the field F is not isomorphic to the rational function field Fq(t). (This
is a fun exercise. For hints, see [Sha77, p. 7]. Sadly, this point is missing
from later editions of Shafarevitch’s wonderful book.) The cases p = 2
and p = 3 are degenerate: F is isomorphic to the rational function field
Fq(t). (If p = 2, let t = (y + 1)/x and note that x = t2 and y = t3 − 1.
If p = 3, let t = y/(x− 1) and note that x = t2 + 1 and y = t3.)

3. Similarly, if p 6= 2, 5 and q is a power of p, let F be the function field
generated by x and y with relation y2 = x5 − 1. It can be shown that F
has field of constants Fq and is not isomorphic to either of the examples
above.

4. Suppose that p ≡ 3 (mod 4) so that −1 is not a square in Fp. Let F be
the function field generated over Fp by elements x1, x2, x3 with relations
x1x2 = x3 and x2

2 + x2
3 = 0. It is not hard to see that the relations

imply that x2
1 = −1 and so F ∼= Fp2(x2). The moral is that the field

of constants of F is not always immediately visible from the defining
generators and relations.

If F has constant field Fq, then any element x ∈ F \ Fq is transcendental
over Fq and so F contains a subfield Fq(x) isomorphic to the rational function
field. Since F has transcendence degree 1, it is algebraic over the subfield
Fq(x).

We can always choose the element x ∈ F such that F is a finite separable
extension of Fq(x). (It suffices to choose x which is not the p-th power of an
element of F .) The theorem of the primitive element then guarantees that F
is generated over Fq(x) by a single element y satisfying a separable polynomial
over Fq(x):

f(y) = yn + a1(x)yn−1 + · · ·+ a0(x) = 0 with ai(x) ∈ Fq(x).

(Separable means that f has distinct roots, or equivalently, f and df
dy

are rela-

tively prime in Fq(x)[y].) This shows that F is Fq(x)[y]/(f(y)).
More symmetrically, we may clear the denominators in the ai and express

the relation between x and y via a two-variable polynomial over Fq:

g(x, y) =
∑

bijx
iyj = 0 with bij ∈ Fq.
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This give us a presentation of F as the fraction field of Fq[x, y]/(g(x, y)).
Thus the general function field can be generated over its constant field by two
elements satisfying a polynomial relation. Note that this representation is far
from unique and it may be more natural in particular cases to give several
generators and relations.

1.3 Curves over finite fields

Let Fp be the algebraic closure of Fp and let Pn(Fp) denote the projective
space of dimension n over Fp. Thus elements of Pn(Fp) are by definition

the one-dimensional subspaces of the vector space F
n+1

p . If (a0, . . . , an) ∈
F
n+1

p \ (0, . . . , 0), we write [a0 : · · · : an] for the element of Pn(Fp) defined by
the subspace spanned by (a0, . . . , an). We let X0, . . . , Xn denote the standard

coordinates on F
n+1

p ; of course the Xi do not give well-defined functions on

Pn(Fp) but the ratio of two homogenous polynomials in the Xi of the same
degree gives a well-defined function on the set where the denominator does
not vanish. In particular, on the subset X0 6= 0, the functions xi = Xi/X0

(i = 1, . . . , n) are a set of coordinates which give a bijection between the set
where X0 6= 0 and the affine space An(Fp) = F

n

p .

We put a topology on Pn(Fp) by declaring that a (Zariski) closed subset
Z ⊂ Pn(Fp) is by definition the set of points where some collection of homo-
geneous polynomials vanishes. We may always take the set of polynomials to
be finite and so a closed set has the form

Z =
{

[a0 : · · · : an] ∈ Pn(Fp)|f1(a0, . . . , an) = · · · = fk(a0, . . . , an) = 0
}

where f1, . . . , fk ∈ Fp[X0, . . . , Xn] are homogeneous polynomials. A closed
subset Z is said to be defined over Fq if we may take the fi to have coefficients
in Fq.

We will work with the following definition, which is somewhat naive, but
suitable for our purposes: A (smooth, projective) curve C over Fq is a closed
subset C ⊂ Pn(Fp) defined over Fq, such that:

1. C is infinite

2. there exist homogeneous polynomials f1, . . . , fk vanishing identically on
C such that for every p ∈ C, the Jacobian matrix ( ∂fi

∂Xj
(p)) (i = 1, . . . , k

and j = 0, . . . , n) has rank n− 1

3. C is not the union of two proper closed subsets, i.e., if Z1 and Z2 are
closed subsets and C = Z1 ∪ Z2 then C = Z1 or C = Z2

In the language of algebraic geometry, the first condition implies that C has
positive dimension and the first two conditions imply that it is smooth and
of dimension 1. The third condition says that C is absolutely irreducible. If
in the third condition we insist that Z1 and Z2 be defined over Fq we arrive
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at the weaker condition that C is irreducible. Although there are sometimes
good reasons to consider irreducible but not absolutely irreducible curves, for
simplicity we will not do so except in one example below.

We equip C with the Zariski topology induced from Pn(Fp) so that its
closed subsets are intersections of C with closed subsets Z ⊂ Pn(Fp).

Warning: in the current literature a curve C is usually defined in a more
sophisticated way. The set we are considering here would be denoted C(Fp)
and called the set of Fp-valued points of C.

Examples:

1. P1 = P1(Fp) is the most basic example. It is defined by the zero polyno-
mial on P1 (!) or, if that seems too tautological, by the equation X2 = 0
in P2(Fp). Either representation makes it clear that P1 is defined over
Fp.

1′. For p > 2, let C2 be the curve in P2(Fp) defined over Fp by the polynomial
X2

1 + X2
2 − X2

0 . Note that restricted to C2 ∩ {X0 6= 0}, the coordinate
functions xi satisfy x2

1 + x2
2 = 1.

1′′. For any p, let C3 be the curve in P3(Fp) defined over Fp by the polynomi-
als X0X2−X2

1 , X0X3−X1X2, and X1X3 = X2
2 . Note that restricted to

C3 ∩ {X0 6= 0}, the coordinate functions xi satisfy x2 = x2
1 and x3 = x3

1.

2. Assume that p > 3 and let C ′3 be the curve in P2(Fp) defined over Fp by
the polynomial X0X

2
2 −X3

1 +X3
0 . (If p = 2 or 3 the second condition in

the definition of a curve is not met: the Jacobian matrix is 0 at [1 : 0 : 1]
if p = 2 and at [1 : 1 : 0] if p = 3.) Note that restricted to C ′3∩{X0 6= 0},
the coordinate functions xi satisfy x2

2 = x3
1 − 1.

3. Assume that p 6= 2, 5 and let C5 be the closed subset of P3(Fp) defined
over Fp by the equation polynomials X0X2 −X2

1 , X0X
2
3 −X1X

2
2 + X3

0 ,
and X1X3 − X3

2 + X2
0X1. Note that restricted to C5 ∩ {X0 6= 0}, the

coordinate functions xi satisfy x2 = x2
1 and x2

3 = x5
1 − 1.

4. Assume that p ≡ 3 (mod 4) so that −1 ∈ Fp is not a square. Let C ′2
be defined over Fp by the three polynomials X2

0 + X2
1 , X2

2 + X2
3 , and

X0X3−X1X2. Then C ′2 is irreducible, but it is not absolutely irreducible
and so it is not a curve by our definition. Indeed, C ′2 is the union of
the two lines {X0 = iX1, X2 = iX3} and {X0 = −iX1, X2 = −iX3}
defined over Fp2 where i ∈ Fp2 satisfies i2 = −1. Note that restricted to
C ′2 ∩ {X0 6= 0}, the coordinate functions xi satisfy x2

1 = −1, x2
2 + x2

3 = 0
and x3 = x1x2.

1.4 Morphisms and rational functions

If C ⊂ Pm(Fp) and C ′ ⊂ Pn(Fp) are curves defined over Fq, a morphism of
curves is a map φ : C → C ′ with the property that at each point P ∈ C,



114 D. Ulmer

φ is represented in an open neighborhood of P by homogenous polynomials.
In other words, for each P ∈ C there should exist polynomials f0, . . . , fn ∈
Fp[X0, . . . , Xm], all homogeneous of the same degree, such that for all Q in
some open neighborhood of P , not all of the fi vanish at Q and φ(Q) =
[f0(Q) : · · · : fn(Q)]. We say that φ is defined over Fq if it possible to choose
the fi with coefficients in Fq. An isomorphism is a morphism which is bijective
and whose inverse is a morphism.

Examples:

1. If f0 and f1 are homogeneous polynomials in Fq[X0, X1] of the same
degree, not both 0, and with no common factors, then

[a0 : a1] 7→ [f0(a0, a1) : f1(a0, a1)]

defines a morphism P1 → P1. Using that Fq[X0, X1] is a unique factor-
ization domain, one checks that every morphism from P1 to itself defined
over Fq is of this form.

1′. For p > 2, the polynomials f0 = X2
0 +X2

1 , f1 = X2
0−X2

1 , and f2 = 2X0X1

define a morphism from P1 over Fp to the curve C2 in Example (1′) of
Section 1.3. This morphism is an isomorphism with inverse defined by
f0 = 1

2
(X0 +X1) and f1 = 1

2
(X0 −X1).

1′′. For any p, the polynomials f0 = X3
0 , f1 = X2

0X1, f2 = X0X
2
1 , and f3 =

X3
1 define a morphism φ from P1 over Fp to the curve C3 in Example (1′′)

of Section 1.3. This morphism is an isomorphism with inverse defined
on {X0 6= 0} by f0 = X0 and f1 = X1 and on {X3 6= 0} by f0 = X2 and
f1 = X3. In this example, it is not possible to define the inverse of φ by
a single set of polynomials on all of C3. Note also that the polynomials
defining a morphism are in general not at all unique. For example, on
{X0X3 6= 0}, the inverse of φ is defined both by f0 = X0 and f1 = X1

and by f0 = X2 and f1 = X3.

2. Let C ′3 be as in Example (2) of Section 1.3. We define a morphism
φ : C ′3 → P1 by setting φ([a0 : a1 : a2]) = [a0 : a1] on the open set
where a0 6= 0 and φ([a0 : a1 : a2]) = [a2

1 : a2
0 + a2

2] on the open set where
a2

0 + a2
2 6= 0. These requirements are compatible since if a0 6= 0 and

a2
0 + a2

2 6= 0, then a1 6= 0 and

[a0 : a1] = [a0a
2
1 : a3

1] = [a0a
2
1 : a3

0 + a0a
2
2] = [a2

1 : a2
0 + a2

2].

If we think of P1(Fp) \ {[0 : 1]} as Fp via [a0 : a1] 7→ a1/a0, then the
morphism φ extends the function x1 = X1/X0, defined on C ′3 ∩{X0 6= 0}
to a morphism C ′3 → P1(Fp). Again, it is not possible to find a single
pair of homogeneous polynomials representing φ at all points of C ′3.
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2′. Let C ′3 be as above. Choose a non-square element a ∈ Fp (p > 3) and
define C ′′3 ⊂ P2(Fp) by the equation aX0X

2
2 −X3

1 + X3
0 = 0. Note that

both C ′3 and C ′′3 are defined over Fp. Let b ∈ Fp2 be a square root of a
and define a morphism φ : C ′′3 → C ′3 by φ([a0 : a1 : a2]) = [bao : a1 : a2]. It
is clear that φ is defined over Fp2 and is an isomorphism. On the other
hand, one can show that C ′′3 and C ′3 are not isomorphic over Fp. This
shows that two curves not isomorphic over their fields of definition may
become isomorphic over a larger field. One says that C ′′3 is a twist of C ′3.

3. If C ⊂ Pn(Fp) is a curve defined over Fq, then there is an important
morphism, the q-power Frobenius morphism Frq : C → C, defined by
Frq([a0 : · · · : an]) = [aq0 : · · · : aqn]. Note that the fixed points of Frq are
precisely the points of C with coordinates in Fq.

4. If C ⊂ Pn(Fp) is a curve and f0, . . . , fk are homogeneous polynomials
in X0, . . . Xn which do not all vanish identically on C, then the map
φ : C → Pk(Fp) given by

φ([a0 : · · · : an]) = [f0(a0, . . . , an) : · · · : fk(a0, . . . , an)]

is well-defined on the non-empty open subset of C where not all of the fi
vanish. It is an important fact that φ can always be extended uniquely
to a well-defined morphism on all of C. (NB: This is false for higher di-
mensional varieties.) In particular, there are globally defined morphisms
xi : C → P1 extending the maps [a0 : · · · : an] 7→ [a0 : ai] which are a
priori only defined on C ∩ {X0 6= 0}.

A rational function on a curve C over Fq is a morphism φ : C → P1

defined over Fq, except that we rule out the constant morphism with image
∞ = [0 : 1]. (NB: This is a reasonable definition only for curves, not for higher
dimensional varieties.) In a neighborhood of any P ∈ C, φ can be represented
by polynomials: φ(Q) = [f0(Q) : f1(Q)] where f0 and f1 are homogeneous of
the same degree and f0 does not vanish identically. It is useful to think of φ
as an Fp-valued function (with poles) whose value at Q is f1(Q)

f0(Q)
. We say that

φ is regular at P ∈ C if φ(P ) 6= ∞ = [0 : 1]. If we restrict to an open set
where φ is regular, i.e., where f0 does not vanish, then we get a well-defined
Fp-valued function. If φ and φ′ are two rational functions, we may restrict
them to an open set where they both give well-defined Fp-valued functions,
add or multiply them, and then extend back to rational functions on C. More
explicitly, if φ and φ′ are represented on some open set U ⊂ C by [f0 : f1] and
[f ′0 : f ′1], then φ+φ′ is represented by [f0f

′
0 : f ′0f1 +f0f

′
1] and φφ′ is represented

by [f0f
′
0, f1f

′
1]. This gives the set of rational functions the structure of a ring,

in fact an algebra over Fq. This algebra turns out to be a field extension of
Fq of transcendence degree 1, i.e., a function field in the sense of the previous
subsection. It is denoted Fq(C).

Note that the ratio f1/f0 can be written as a rational function (ratio of poly-
nomials) in x1 = X1/X0, . . . , xn = Xn/X0. This shows that if C ⊂ Pn(Fp),
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then Fq(C) is generated over Fq by the rational functions x1, . . . , xn. To de-
termine Fq(C), we need only determine the relations among the xi.

Examples:

1. As noted above, a rational function on P1 is given by two homogeneous
polynomials f0 and f1 of the same degree, with f0 6= 0. Two rational
functions [f0 : f1] and [f ′0 : f ′1] are equal if and only if f1/f0 = f ′1/f

′
0. Thus

we see that rational functions on P1 are equivalent to rational functions
(ratios of polynomials) in x = X1/X0, i.e., Fp(P

1) = Fp(x) and more
generally Fq(P

1) = Fq(x).

1′. The function fields of the curves C2 and C3 in Examples (1′) and (1′′) of
Section 1.3 are also isomorphic to Fp(x). One can see this by using the
relations among the xi noted above, or by using the fact (to be explained
below) that isomorphic curves have isomorphic function fields.

2. Let C ′3 be as in Example (2) of Section 1.3 and let x1 be the rational
function φ of that example (so x1([a0 : a1 : a2]) = [a0 : a1] or [a2

1 : a2
0+a2

2]).
Let x2 be the rational function defined on all of C ′3 by x2([a0 : a1 : a2]) =
[a0 : a2]. Then x1 and x2 generate the field of rational functions on C ′3
over Fq and they satisfy the relation x2

2 = x3
1− 1. In other words, Fq(C ′3)

is the field in Example (2) of Section 1.2.

3. Let C5 be as in Example (3) of Section 1.3 and define rational functions
x1 and x3 by

x1([a0 : a1 : a2 : a3]) =

{
[a0 : a1] if a0 6= 0

[a2
2 : a2

0 + a2
3] if a2

0 + a2
3 6= 0

and
x3([a0 : a1 : a2 : a3]) = [a0 : a3].

(We leave it to the reader to check that these formulas do indeed define
rational functions on C5.) It is not hard to see that x1 and x3 generate
Fq(C5). The equations defining C5 imply that x2

3 = x5
1 − 1 and that all

relations among x1 and x3 are consequences of this one. Thus Fq(C5) is
the function field of Example (3) of Section 1.2.

1.5 The function field/curve dictionary

The examples at the end of the last section illustrate the general fact that if
C is a curve defined over Fq, then the field of rational functions Fq(C) is a
function field, i.e., a finitely generated extension of Fp of transcendence degree
one, with field of constants Fq.

Conversely, it turns out that every function field F with field of constants
Fq is the field of rational functions of a curve defined over Fq which is uniquely
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determined up to Fq-isomorphism. We sketch one construction of the curve
corresponding to a function field F . As we pointed out above, F may be
generated over Fq by two elements x and y satisfying a single relation

0 = g(x, y) =
∑

bijx
iyj with bij ∈ Fq.

If g has degree d, we form

G(X0, X1, X2) = Xd
0g(X1/X0, X2/X0) =

∑
bijX

d−i−j
0 X i

1X
j
2

and consider the closed subset of P2(Fp) defined by G = 0. This closed subset
will be infinite and irreducible, but it will not in general be a curve under
our definition, since it may not satisfy the Jacobian condition. If it does, we
are finished. If not, the closed set {G = 0} has singularities and the classical
process of blowing up (see [Ful89, Chap. 7]) gives an algorithm to resolve the
singularities and find a smooth curve in some high-dimensional projective space
with function field F . By a suitable projection, the curve C can be embedded
in P3(Fp). In general we will not be able to find a plane curve with function
field F . This is the case for example with the function field in Example (3) of
Section 1.2 generated by x and y satisfying y2 = x5 − 1. The simplest curve
with this function field is a curve in P3(Fp) defined by three equations.

The dictionary between curves and function fields extends to morphisms
and field extensions. More precisely, if C and C ′ are two curves defined over Fq

and φ : C → C ′ is a non-constant morphism defined over Fq, then composition
with φ induces a “pull-back” homomorphism of fields Fq(C ′) ↪→ Fq(C) which is
the identity on Fq. Conversely, it can be shown that if F and F ′ are function
fields over Fq with corresponding curves C and C ′, then a field inclusion F ′ ↪→ F
which is the identity on Fq is induced by a unique non-constant morphism of
curves C → C ′ which is defined over Fq.

Examples:

1. If C is a curve over Fq and x is a non-constant rational function on C, then
x is transcendental over Fq. Thus the rational function field F ′ = Fq(x)
is a subfield of F = Fq(C). The corresponding morphism C → P1 is the
morphism x.

2. Suppose F ′ is a function field with field of constants Fq and C ′ is the
corresponding curve over Fq. If r is a power of q so that Fr is a finite
extension of Fq, then the function field F = FrF

′ corresponds to the
same curve C ′ viewed over Fr. (Here FrF

′ is the compositum of Fr and
F ′, i.e., the smallest field containing both Fr and F ′.) In other words,
F = Fr(C ′).

3. We say that an extension of function fields F/F ′ is geometric if it is
separable and if the field of constants of F and F ′ are the same. If
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n = [F : F ′] is the degree of the field extension, then the corresponding
morphism of curves φ : C → C ′ has degree n in the sense that for all but
finitely many P ∈ C ′, φ−1(P ) consists of n points.

4. If F/F ′ is a purely inseparable extension of function fields, say of degree
pm, then F ′ = F pm , the subfield of pm-th powers. In terms of suitable
equations, the morphism C → C ′ acts on points by raising their coordi-
nates to the pm-th power.

An arbitrary extension can be factored into three like these: Given F/F ′, let
Fr be the field of constants of F and let F sep be the separable closure of F ′ in
F . Then FrF

′/F ′ is a constant field extension, F sep/FrF
′ is geometric, and

F/F sep is purely inseparable.

1.6 Points, prime divisors, and places

As we have defined it, a curve C over Fq is a set of points with coordinates
in Fp. We would like to have a set which reflects the fact that the equations
defining C have coefficients in Fq. The naive thing to look at would be the
set of Fq-rational points of C, i.e., those with coordinates in Fq, but this set
is too small to be useful—it may even be empty. The classical approach is to
consider Fq-rational prime divisors.

A divisor on C is a finite, formal, linear combination d =
∑
aPP of points

of C with integer coefficients. A divisor d is called effective if aP ≥ 0 for all P .
The degree of d is deg(d) =

∑
aP . The support of d, written |d|, is the set of

points appearing in d with non-zero coefficient.
If σ ∈ Gal(Fp/Fq) and P ∈ C, then P σ is again in C. (Here σ acts on

the coordinates of P and the claim follows from the fact that the equations
defining C have coefficients in Fq.) We extend this action to divisors by linearity
((
∑
aPP )σ =

∑
aPP

σ) and we say that a divisor d =
∑
aPP is Fq-rational if

it is fixed by the Galois group, i.e., if dσ = d for all σ ∈ Gal(Fp/Fq).
A prime divisor is an effective Fq-rational divisor which is non-zero and

cannot be written as the sum of two non-zero Fq-rational effective divisors.
(Note that whether or not a divisor is prime depends on the ground field over
which we are considering our curve. A better terminology might be Fq-prime,
but we will stick with the traditional terminology.) It is not hard to see that
the prime divisors of C are in bijection with the orbits of Gal(Fp/Fq) acting
on C. If p is a prime divisor, we define the residue field of p to be the field
generated over Fq by the coordinates of any point in the support of p. If p is
prime and has degree d, then the residue field at p is Fqd .

If P is a point of C and f ∈ Fq(C) is a rational function on C, then f has
a well-defined order of vanishing or pole at P . One motivation for considering
prime divisors is that the order of f at P is the same for all points P in the
support of the prime divisor p containing P . In other words, the various points
in |p| cannot be distinguished from one another by the vanishing of Fq-rational
functions.
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Examples:

1. Let C = P1 over Fq. The divisors of degree 1 are simply the points of
P1 with coordinates in Fq. The prime divisors of degree d > 1 are in
bijection with the irreducible, monic polynomials in Fq[x] of degree d, a
polynomial corresponding to the formal sum of its roots.

2. Let C ′3 be the curve in Example (2) of Section 1.3 over Fq. If a ∈ Fq with
a3 − 1 6= 0, consider the points P = [a : b : 1] and Q = [a : −b : 1] where
b ∈ Fp satisfies b2 = a. The divisor d = P + Q has degree two and it is
prime if and only if b 6∈ Fq. If b ∈ Fq, then d is the sum of two prime
divisors, namely P and Q.

The set of prime divisors on C is more “arithmetical” than the full set of
points on C (since it takes into account that C is defined over Fq) and more
convenient and flexible than the set of Fq-rational points of C.

Prime divisors play the role of the prime ideals of a number field. More
precisely, if p =

∑
Pi is a prime divisor and if f ∈ Fq(C) we say f is regular

(resp. vanishes) at p if it is regular (resp. vanishes) at one and therefore all
of the Pi ∈ |p|. The set of f ∈ Fq(C) which are regular at p is a discrete
valuation ring Rp with fraction field Fq(C). The maximal ideal of Rp is the set
of f which vanish at p. The residue field at p as we defined it above turns out
to be Rp modulo its maximal ideal. We get a valuation ordp : Fq(C)× → Z in
the usual way. It turns out that every non-trivial valuation of Fq(C) is ordp

for a uniquely determined prime divisor p. (Therefore, it is possible, although
not in my opinion advisable, to eliminate the geometry completely and study
function fields via their valuations. What one gains in algebraic purity hardly
seems to compensate for the loss of geometric intuition this approach entails.)

Here is one respect in which the analogy between function fields and number
fields breaks down (“il y a des grandes différences de sens d’une colonne à
l’autre”): in a number field F , there is a canonical Dedekind domain contained
in F whose primes give the non-archimedean valuations of F , namely the ring
of integers. In a function field, to get a Dedekind domain we fix a non-empty
set of prime divisors S and then consider the ring R of functions regular at all
primes not in S. The prime ideals of R are then in bijection with the prime
divisors of Fq(C) except those in S, and with the valuations of Fq(C) except
those arising from primes in S. One thinks of the primes in S as the “infinite
primes”, but there is no canonical choice for the set S.

1.7 The Riemann-Roch theorem

The Riemann-Roch theorem is true for curves over non-algebraically closed
fields and the statement is essentially the same as for the case of curves over
algebraically closed fields. We give the basics in our context.

Let C be a curve defined over Fq with function field F = Fq(C). For each
P ∈ C and 0 6= f ∈ F , there is a well-defined order of vanishing or pole
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of f at P , denoted ordP (f). The divisor of f is defined as the formal sum
(f) =

∑
P ordP (f) which is in fact a finite sum. It is not hard to see that (f)

is Fq-rational and a basic results says that it has degree 0:
∑

P ordP (f) = 0.
If d is an Fq-rational divisor, we define the Riemann-Roch space L(d) by

L(d) = {f ∈ F×|(f) + d is effective} ∪ {0}.

Roughly speaking, L(d) consists of rational functions whose poles are at worst
given by d. It is clear that L(d) is an Fq vector space which turns out to be
finite dimensional. Note that L(d) is obviously zero if d has negative degree.

The Riemann-Roch theorem in its most basic form is a formula that often
allows one to compute the dimension l(d) of L(d). The theorem says that there
is a non-negative integer g, the genus of C and a divisor ω of degree 2g − 2
such that for all divisors d

l(d)− l(ω − d) = deg(d)− g + 1.

The divisor ω is not unique (if ω works, then so does ω+ (f) for any non-zero
f)). Despite this ambiguity, ω is called a canonical divisor . It turns out that
ω can be calculated as the divisor of a rational 1-form (i.e., a 1-form possibly
with poles) on C.

It follows immediately that l(d) ≥ deg(d) − g + 1 with equality if deg d >
2g − 2. This gives a large supply of functions with controlled poles.

As an example, note that on P1 over Fq the Riemann-Roch space L(d∞)
is just the space of polynomials of degree d, which has dimension d + 1. It
follows that the genus of P1 is 0. One can check that the genus of the curve
in Example (2) of Section 1.3 is 1 and the genus of the curve in Example (3)
is 2.

As another application, which we leave as a simple exercise, the theorem
implies a partial converse to the statement that P1 has genus zero: if C has
genus zero and an Fq-rational divisor of degree 1, then C is isomorphic to P1.
It turns out that over a finite field Fq every curve has an Fq-rational divisor
of degree one, so this partial converse is in fact a complete converse.

The reader curious about what a number field analog of the Riemann-
Roch theorem might be should consult Weil’s “Basic Number Theory,” [Wei95,
Chap. VI].

1.8 Extensions, coverings, and splitting

Let C and C ′ be curves defined over Fq and let φ : C → C ′ be a morphism of
curves defined over Fq. We say that φ has degree n if n = [Fq(C) : Fq(C ′)].
Given a point P in C or C ′ we write Fq(P ) for the field generated over Fq by the
coordinates of P . We define an inverse image mapping on divisors. If P ∈ C ′
and if set-theoretically the inverse image of P in C is {Q1, . . . , Qk}, then we
assign a multiplicity ei to each Qi by choosing a rational function f vanishing
simply at P and setting ei = the order of vanishing of the pull-back of f at
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Qi. We then define φ−1(P ) as
∑
eiQi and extend to divisors by linearity. It

turns out that if Fq(C) is separable over Fq(C ′) (i.e., if we have a geometric
extension of function fields), then for all but finitely many P , all the ei are 1,
and in general for all P ,

∑
ei = n.

If p is a prime divisor of C, then we may decompose φ−1(p) into a sum
of prime divisors q1, . . . , qg. For each qi we may define the residue degree fi
as deg qi/ deg p or equivalently, the degree of the field extension Fq(Q)/Fq(P )
where P is any point in the support of p and Q is any point over P in the
support of qi. The ramification index ei is the ei defined above for any point
P in the support of p and any point Q over P in the support of qi. It is a basic
fact that for all p,

∑g
i=1 eifi = n where n = [F : F ′].

Examples:

1. Suppose p > 3, q is a power of p, F is the fraction field of Fq[x, y]/(y2 −
x3 + 1), and F′ = Fq(x), so that the corresponding morphism of curves
φ : C → C ′ = P1 is as in Example (2) in Section 1.4. Suppose that p is
a prime divisor of degree one corresponding to a finite Fq-rational point
P with coordinate x = a. If a3 − 1 = 0, then φ−1(p) is a single prime q

with e = 2 and f = 1; we say p is ramified. If a3− 1 is a non-zero square
of Fq, then φ−1(p) consists of two primes q1 and q2, both with e = 1 and
f = 1; we say that p splits. Finally, if a3 − 1 is a non-square in Fq, then
φ−1(p) consists of one prime q with e = 1 and f = 2; we say that p is
inert.

2. With notation as in the last example, if p is a general prime, say p =∑
Pi, then the behavior of φ over each of the points Pi is the same (one

ramified point, two points with the same field of coordinates as Pi, or
two points with coordinates in a quadratic extension of Fq(Pi)) and so
φ−1(p) = 2q with deg q = deg p (p ramifies), φ−1(p) = q1 + q2 with
deg qi = deg p (p splits), or φ−1(p) = q with deg q = 2 deg p (p is inert).

3. If C is defined over Fq and r = qn, then we may consider the splitting of
Fq-rational prime divisors into Fr-rational prime divisors. This splitting
is determined purely in terms of degrees: an Fq-rational prime p of degree
d splits into gcd(n, d) Fr-rational primes, each with e = 1 and f =
n/ gcd(d, n).

4. If C → C ′ is a morphism of curves defined over Fq and is purely insepa-
rable of degree pm, then every prime p of C ′ pulls back to a single prime
q of C with e = pm and f = 1.

In the case of a morphism C → C ′ corresponding to a geometric extension F/F ′

which is Galois, it is easy to see that for a fixed prime p of C ′, the ramification
and residue degrees ei and fi are all the same, in other words, p splits into
g primes, all with ramification index e and residue degree f , and we have
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efg = n = [F : F ′]. Only finitely many p have e > 1 and one can make very
precise statements about the distribution of primes having allowable values of
f and g. See Section 1.10 below.

1.9 Frobenius elements

Let F ′ be a function field with constant field Fq and let F be a finite Galois
extension of F ′ with Galois group G; for simplicity we assume the extension
F/F ′ is geometric, i.e., the field of constants of F is Fq. Let φ : C → C ′ be the
corresponding morphism of curves over Fq. Fix a finite extension Fr of Fq and
a point of P ∈ C ′ rational over Fr. We may view P as an Fr-rational prime
divisor. Suppose that p1, . . . , pg are the Fr-rational primes of C over P , so that
as divisors φ−1(P ) = ep1 + · · · + epg where e is the ramification index. The
Galois group G acts (transitively in fact) on the set of pi and we let Dpi ⊂ G
denote the stabilizer of pi, the decomposition group at pi. Then Dpi acts on the
residue field at pi and so we have a homomorphism Dpi → Gal(Fr′/Fr) where
Fr′ = Fr(pi) = Fr(Q) for any Q ∈ |pi|. This homomorphism is surjective
with kernel denoted Ipi , the inertia group at pi. It turns out that the order
of the inertia group is e, the ramification index of pi. When e = 1, there
is a distinguished element of Dpi , namely the one that maps to the r-power
Frobenius in Gal(Fr′/Fr). When e > 1 we get a distinguished coset of Ipi in
Dpi . Changing the choice of pi changes Dpi , Ipi and the distinguished element
or coset by conjugation by an element of G. Therefore, we get a well-defined
conjugacy class in G depending only on Fr and P which we denote FrFr,P .
Similarly, we write DFr,P and IFr,P for the conjugacy classes of subgroups of
G defined as above. It is not hard to check that FrFrn ,P = FrnFr,P .

One also associates decomposition and inertia subgroups and a Frobenius
element to a prime p of C as follows: we let Fr be the residue field at p and
choose P ∈ |p| and then set Dp = DFr,P , Ip = IFr,P , and Frp = FrFr,P . The
resulting conjugacy classes are well-defined independently of the choice of P .
This Frobenius is more analogous to the Frobenius element considered over
number fields.

Example: Let C → C ′ = P1 be the morphism considered in Example (2) in
Section 1.4 and again in Example (2) in Section 1.8. This is a Galois covering
with group G = {±1}. If a ∈ Fr is such that a3 − 1 6= 0, and P ∈ P1 is the
point [1 : a], then the Frobenius class FrP is 1 if a3 − 1 is a square in Fr and
is −1 if it is not a square. If p is an Fq-rational prime divisor of P1, then Frp

is 1 if p splits and is −1 if p is inert.

The definitions of decomposition and inertia subgroups and Frobenius el-
ements extend to infinite Galois extensions in exactly the same way as in the
number field context.
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1.10 Cebotarev equidistribution

The classical Cebotarev density theorem says roughly that Frobenius elements
are equidistributed in the Galois group of a Galois extension of number fields.
To discuss a function field analogue, we keep the notations of the last section
so that F/F ′ is a geometric Galois extension of function fields over Fq, with
corresponding morphism of curves C → C ′ defined over Fq. We consider the
distribution of Frobenius conjugacy classes FrFr,P as P varies over Fr-rational
points of C ′ for large r.

One analogue of the Cebotarev density theorem for function fields says
that the Frobenius classes become equidistributed as r tends to infinity. More
precisely, if C ⊂ G is a conjugacy class, then

lim
r→∞

|{P ∈ C ′(Fr)|FrFr,P ∈ C}|
|{P ∈ C ′(Fr)}|

=
|C|
|G|

where r tends to infinity through powers of q. A useful way to rephrase this is
to consider conjugation invariant functions f on G. It make sense to evaluate
such a function on a Frobenius conjugacy class and we have

lim
r→∞

∣∣∣∣∣∣
1

|C ′(Fr)|
∑

P∈C′(Fr)
f(FrFr,P )− 1

|G|
∑

g∈G
f(g)

∣∣∣∣∣∣
= 0

There is a more precise statement about the rate of convergence: given
data as above, there exists a constant depending only on F/F ′ and f such
that for all powers r of q,

∣∣∣∣∣∣
1

|C ′(Fr)|
∑

P∈C′(Fr)
f(FrFr,P )− 1

|G|
∑

g∈G
f(g)

∣∣∣∣∣∣
≤ Cr−1/2.

The constant C can be made quite explicit in terms of the representation theory
of G and the expansion of f in terms of characters. See [KS99b, 9.7.11-13] for
details.

As a very simple example of what this means in down-to-earth terms, we
return to Example (2) of Section 1.8. In that context, Cebotarev equidistri-
bution says that for large r, for about 1/2 of the elements a ∈ Fr, a

3 − 1 is a
square and for about 1/2 of the a, it is not a square.

2 ζ-functions and L-functions

In this section we define ζ- and L-functions, give some examples, and discuss
the spectral interpretation. Warning: we use a non-standard, radically simpli-
fied notation for certain cohomology groups. See Section 4 for references with
a more complete treatment.
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2.1 The ζ-function of a curve

Let F be a function field with field of constants Fq. Let C be the corresponding
curve and denote by C0 the set of Fq-rational prime divisors of C. We define
the zeta-function of C in analogy with the Riemann zeta-function:

ζ(C, s) =
∏

p∈C0

(1−Np−s)−1

where Np = qdeg p is the number of elements in the residue field at p. (This
function depends not just on the curve C but also on the constant field Fq and
when we want to make this dependence explicit, we write ζ(C/Fq, s).)

If Cm denotes the number of primes in C0 of degree m and Nn denotes the
number of points of C defined over Fqn , then we have

Nn =
∑

m|n
mCm.

Rearranging formally, we find that

ζ(C, s) = exp

( ∞∑

n=1

Nn

n
q−ns

)

which makes the diophantine interest of ζ quite visible.
The product defining ζ(C, s) and the rearranged sum converge absolutely

in the region Re s > 1. Using the Riemann-Roch theorem, one can show that
ζ(C, s) extends to a meromorphic function on all of C, with simple poles at
s = 1 and s = 0 and holomorphic elsewhere, and that it satisfies a functional
equation relating s and 1 − s. (There are no Γ-factors because the product
defining ζ is over all places of F .) More precisely,

q−s(1−g)ζ(C, s) = q(s−1)(1−g)ζ(C, 1− s)

where g is the genus of C.
Here are some examples: If F is the rational function field with constant

field Fq, so that C = P1, then Nn = qn + 1 and so

ζ(C, s) =
1

(1− q−s)(1− q1−s)
.

Let C be the curve with affine equation y2 = x3 − x over Fp where p ≡ 3
(mod 4) and p > 3. Using the fact that −1 is not a square modulo p, it is easy
to check that the number of points on E over Fp is p+ 1 and more generally,
if f is odd, the number of points on E with coordinates in Fpf is pf + 1. (One
considers pairs x = a and x = −a, excluding x = 0 and ∞. Since −1 is not
a square in Fq, x

3 − x is a square for exactly one of x = a or x = −a; when
it is a square there are two values of y with y2 = x3 − x and none when it is
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not. Thus the number of solutions with finite non-zero a is q− 1 and the total
number of solutions is q + 1.) A somewhat more elaborate argument using
exponential sums allows one to show that for even f , the number of solutions
over Fpf is pf + 1− 2(−p)f/2. (See Koblitz [Kob93, II.2] or Ireland and Rosen
[IR90, Chap. 18] for a nice exposition of this argument.) Using the expression
for ζ in terms of the Nn, we conclude that

ζ(C/Fp, s) =
(1−√−pp−s)(1 +

√−pp−s)
(1− p−s)(1− p1−s)

=
1 + p1−2s

(1− p−s)(1− p1−s)
.

As a third example we assume that p > 2 and q = pf ≡ 1 (mod 3) and
consider the curve C with affine equation y3 = x4 − x2, or rather the smooth,
projective curve obtained from this one by desingularization. (This curve is
singular at (x, y) = (0, 0), but there is exactly one point over this one in the
smooth curve, so for the purposes of counting points we may ignore this.) This
curve has genus g = 2.

Let λ : Fq
× → C× be a character of order exactly 6 and for a = 1, 2, 4, 5

define
Ja =

∑

x∈Fq
x6=0,1

λa(x(1− x)).

It is not hard to check that |Ji| = q1/2 and J5 = J1, J4 = J2. Using arguments
similar to those in Koblitz or Ireland and Rosen, one verifies that the number
of points on C over Fqf is qf + 1−∑a∈{1,2,4,5} J

f
a . This implies that

ζ(C/Fq, s) =

∏
a∈{1,2,4,5}(1− Jaq−s)

(1− q−s)(1− q1−s)
.

In general, if C has genus g then ζ(C, s) has the form

P (q−s)

(1− q−s)(1− q1−s)

where P is a polynomial of degree 2g with integer coefficients and constant term
1. Writing P (T ) =

∏2g
i=1(1−αiT ), the functional equation for ζ is equivalent to

the fact that the set of inverse roots αi is invariant under αi 7→ q/αi. Moreover,
ζ satisfies an analogue of the Riemann hypothesis: all of the inverse roots αi
have absolute value q−1/2 and so the zeros of ζ lie on the line <(s) = 1/2.
These results were proven in general by Weil in [Wei48].

More generally, one can define a zeta function for any variety defined over
a finite field via a product or exponentiated sum as above. If X is smooth and
complete of dimension d, then one knows that ζ(X, s) is a rational function in
q−s of a very special form. More precisely,

ζ(X, s) =
P1(q−s)P3(q−s) · · ·P2d−1(q−s)

P0(q−s)P2(q−s) · · ·P2d(q−s)
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where each Pi is a polynomial with integer coefficients all of whose inverse roots
have complex absolute value qi/2 (an analogue of the Riemann hypothesis).
Moreover, if the inverse roots of Pi are α1, . . . , αk, then the inverse roots of
P2d−i are qd/α1, . . . , q

d/αk and so ζ(X, s) extends to a meromorphic function in
the plane and satisfies a functional equation for s→ d−s. These properties of
the ζ-function were conjectured by Weil in [Wei49] and proved in full generality
by Deligne in 1974.

2.2 Spectral interpretation of ζ-functions

Already at the time he made his famous conjectures, Weil envisioned a co-
homological explanation for the conjectured properties of the zeta function.
This was provided in important cases by Weil and later in full generality by
Grothendieck, Deligne, and collaborators.

We fix an auxiliary prime ` not equal to the characteristic of Fq. Attached
to a curve C over a finite field Fq are finite-dimensional Q`-vector spaces H0(C),
H1(C) and H2(C) each equipped with an action of Gal(Fp/Fq). The ζ-function
of C then has an interpretation in terms of the spectrum of the q-power Frobe-
nius Frq, which is a generator of Gal(Fp/Fq), namely

ζ(C, s) =
P1(q−s)

P0(q−s)P2(q−s)

where
Pi(T ) = det

(
1− T Frq |H i(C)

)
.

(It turns out that the eigenvalues of Frq are algebraic numbers, so that
we may interpret them as complex numbers. In fact the coefficients of the
reversed characteristic polynomials appearing here are integers, so there is no
dependence on an embeddings of Q into Q` and C.)

It turns out that H0(C) is one-dimensional with trivial action of Frq, H
2(C)

is one-dimensional with Frq acting by multiplication by q and H1(C) is 2g-
dimensional, where g is the genus of g. This shows that ζ(C, s) is a rational
function in q−s of the form mentioned in the last section.

The functional equation is a manifestation of a Poincaré duality: there are
pairings H i(C)×H2−i(C)→ H2(C) compatible with the actions of Frq and this
shows that the eigenvalues of Frq on H i are q divided by the eigenvalues of Frq
on H2−i, which is the content of the functional equation.

The Riemann hypothesis, namely that the zeros of ζ(C, s) lie on the line
<(s) = 1/2, is equivalent to the statement that the eigenvalues of Frq on H1(C)
have complex absolute value q1/2.

All of the above generalizes to smooth proper varieties of any dimension
over Fq. For an X of dimension d, there are finite-dimensional Q`-vector spaces
H0(X), . . . , H2d(X) with an action of Frq; H

0(X) is one-dimensional with triv-
ial Frq action and H2d(X) is one-dimensional with Frq acting by multiplication
by qd. There is a Poincaré duality pairing H i(X) × H2d−i(X) → H2d(X)
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which is non-degenerate and compatible with the Frobenius actions. Finally,
the eigenvalues of Frq on H i(X) are algebraic integers with absolute value qi/2

in every complex embedding.

2.3 Examples of L-functions

Just as in the number field case, we can define L-functions associated to rep-
resentations of the absolute Galois group of a function field. Before giving the
general definitions, we consider three examples.

First, let F be a quadratic extension of Fq(t), corresponding to a branched
cover C → P1 of degree 2. Since F/Fq(t) is a Galois extension with group
{±1}, we get a quadratic character

χ : Gal(Fq(t)/Fq(t))→ Gal(F/Fq(t))→ {±1}.

Let us define the L-function of χ as

L(χ, s) =
∏

p∈(P1)0

(1− χ(p)Np−s)−1

where for unramified p, χ(p) = χ(Frp) is 1 if p splits in F and −1 if p is
inert; we set χ(p) = 0 if p is ramified in F . An elementary (Euler-factor by
Euler-factor) computation shows that

ζ(C, s) = ζ(P1, s)L(χ, s).

On the other hand,

ζ(C, s) =
P (q−s)

(1− q−s)(1− q1−s)

and

ζ(P1, s) =
1

(1− q−s)(1− q1−s)

and so

L(χ, s) = P (q−s).

The functional equation for ζ is equivalent to

qgsL(χ, s) = qg(1−s)L(χ, 1− s).

This applies in particular to the curve y2 = x3 − x considered above: we
view it as a degree two cover of the t-line by (x, y) 7→ t = x. It follows that

L(χ, s) = (1−√−pp−s)(1 +
√−pp−s) = 1 + p1−2s.

For a second class of examples, consider a Galois extension F/Fq(t) with
Galois group Z/dZ, corresponding to a degree d cyclic covering of curves C →
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P1. Let χ : Gal(Fq(t)/Fq(t)) → Gal(F/Fq(t)) → µd ⊂ Q
×

be a complex
valued character of order exactly d and for i = 1, . . . , d− 1 define

L(χi, s) =
∏

p∈(P1)0

(1− χi(p)Np−s)−1

where χ(p) = χ(Frp) for unramified p and χ(p) = 0 if p is ramified in F . Again
an elementary calculation shows that

ζ(C, s) = ζ(P1, s)L(χ, s)L(χ2, s) · · ·L(χd−1, s).

It turns out that each L(χi, s) for i = 1, . . . , d − 1 is a polynomial in q−s and
their product is the numerator P (q−s) of ζ(C, s).

For d > 2 a new phenomenon becomes apparent: the functional equation
links two distinct L-functions. More precisely, we have

qNis/2L(χi, s) = εqNi(1−s)/2L(χ−i, 1− s)

where Ni = N−i is the degree of L(χi, s) as a polynomial in q−s and ε is a
complex number of absolute value 1. This will be important later when we
discuss symmetry types.

As a specific example of this type, we consider the curve C defined by
y3 = x4 − x2, discussed above, viewed as a Galois cover of P1 of degree 3 via
(x, y) 7→ t = x. For a suitable choice of character χ : Gal(F/Fq(t)) → µ3, we
have L(χ, s) = (1− J1q

−s)(1− J4q
−s) and L(χ2, s) = (1− J2q

−s)(1− J5q
−s).

A third, more elaborate, class of examples comes from elliptic curves. Let
E be an elliptic curve defined over F . This could be given, for example, by a
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the ai are in F . If E has good reduction at a place p of F , we define a
local Euler factor by

Lp(E, s) = (1− apq
−s
p + q1−2s

p )

where qp is the cardinality of the residue field at p and qp−ap +1 is the number
of points on the reduction of E at p. If E has bad reduction at p, we define a
local factor by

Lp(E, s) =





1− q−sp if E has split multiplicative reduction at p

1 + q−sp if E has non-split multiplicative reduction at p

1 if E has additive reduction at p.

Then we define the global (Hasse-Weil) L-function of E as

L(E, s) =
∏

p

Lp(E, s)
−1.
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This L-function turns out to be a rational function in q−s and it satisfies a
functional equation for s → 2 − s. More precisely, if E is not isomorphic to
an elliptic curve defined over Fq, then L(E, s) is a polynomial in q−s whose
degree is determined by the genus of the curve corresponding to F and the
places of bad reduction of E. In this case,

L(E, s) =
N∏

i=1

(1− αiq−s)

where the set of inverse roots αi is invariant under αi 7→ q2/αi and each of
them has complex absolute value q. In particular, the zeros of L(E, s) lie on
the line <(s) = 1.

2.4 L-functions attached to Galois representations

As in the number field case, over function fields there are two general classes
of L-functions, automorphic L-functions attached to automorphic representa-
tions (generalizing Dirichlet characters, Hecke characters, etc.) and “motivic”
L-functions attached to representations of Galois groups, and a Langlands phi-
losophy which very roughly speaking says that the latter are the same as the
former. In the function field setting there is a quite satisfactory understanding
of the analytic properties of motivic L-functions which we sketch in this and
the following section.

As usual, let F = Fq(C) be the function field of a curve over Fq. We fix a
prime ` and write E for a finite extension of Q` which we may expand as nec-
essary in the course of the discussion. The basic input data is a representation

ρ : Gal(F/F )→ GLn(E)

which is continuous (for the Krull topology on Gal(F/F ) and the `-adic topol-
ogy on GLn(E)) and unramified outside a finite set of places of F . The latter
means that for all but finitely many primes p, ρ(Ip) = {1} where Ip is the
inertia subgroup at p. We assume that ρ is absolutely irreducible, i.e., is re-
ducible even after extending scalars to E. We also assume that ρ has a weight
w ∈ Z, which means that for every unramified prime p, all of the eigenvalues
of ρ(Frp) are algebraic integers and have absolute value qw/2 in every complex
embedding.

Given ρ, we define an L-function by

L(ρ, s) =
∏

p

det
(

1− ρ(Frp)Np−s
∣∣∣ (En)Ip

)−1

.

Here Np is the cardinality of the residue field at p, Ip is the inertia group at

p, and (En)Ip denotes the subspace of En where Ip acts (via ρ) trivially; for

almost all p this will just be En itself. On the space of invariants (En)Ip there is
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a well-defined action of the Frobenius elements Frp and the local factors above
are the reciprocals of the reversed characteristic polynomials of the action of
Np−s times ρ(Frp).

Easy estimates show that the product defining L(ρ, s) converges absolutely
in the region <(s) > 1 + w/2, uniformly on compact subsets, and so defines a
holomorphic function there. As we will see in the next section, L(ρ, s) has a
meromorphic continuation to all of C which is entire if and only if ρ restricted
to Gal(F/FpF ) contains no copies of the trivial representation. In general,
L(ρ, s) satisfies a functional equation

L(ρ, s) = ε(ρ, s)L(ρ∨, 1− s)

where ρ∨ is the dual representation and ε(ρ, s) is an entire function with
ε(ρ, 1/2) a complex number of absolute value 1.

The attentive reader may be distressed by the apparent mixture of `-adic
and complex numbers in the definition of L(ρ, s). To make things precise, we
fix embeddings Q ↪→ Q` and Q ↪→ C; since we assumed that the eigenvalues
of ρ(Frp) are algebraic numbers we may use the embeddings to regard the
coefficients of the reversed characteristic polynomials as complex numbers.

The examples of the previous section can be fit into this general framework
as follows. If K/F is a finite Galois extension and χ : Gal(K/F )→ µd ⊂ E =
Q`(µd) is a character, then composing with the natural projection Gal(F/F )→
Gal(K/F ) gives a one-dimensional, absolutely irreducible `-adic representation
satisfying our hypotheses. It has weight w = 0.

The elliptic curve example is somewhat more elaborate. In this case, we
consider the `-adic Tate module of E over F , namely lim←−mE(F )[`m] which

is isomorphic to Z2
` . There is an action of Gal(F/F ) on this Tate module

and as ρ we take the dual of this representation. At a prime p where E has
good reduction, general `-adic results show that the reversed characteristic
polynomial of Frp is just the reversed characteristic polynomial of the Np-
power Frobenius on the group H1(E (mod p)) mentioned in the discussion of
zeta functions. In particular, the coefficients of the local zeta function are
given in terms of the number of points on the reduction of E at p by the recipe
mentioned in the previous section. Something similar, albeit more involved,
happens at the places of bad reduction.

2.5 Spectral interpretation of L-functions

There is a spectral interpretation of L-functions which is quite parallel to that
of ζ-functions—the key is to think of a representation ρ as providing coefficients
for a cohomology theory. Of course we cannot explain the details here, but
the idea is this: given ρ, we have cohomology groups H i(C, ρ) (i = 0, 1, 2)
which are finite-dimensional E-vector spaces with an action of Gal(Fp/Fq).
(For experts, we are taking the lisse sheaf on an open subset of C associated to
ρ, forming its middle extension on C, and taking cohomology on C × Spec Fp.)
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Then

L(ρ, s) =
P1(q−s)

P0(q−s)P2(q−s)

where
Pi(T ) = det

(
1− T Frq |H i(C, ρ)

)
.

If ρ has weight w then the eigenvalues of Frq on H i(C, ρ) are algebraic integers
with absolute value q(i+w)/2 in every complex embedding. Poincaré duality
takes the form

H i(C, ρ)×H2−i(C, ρ∨)→ H2(C, ρ⊗ ρ∨)→ H2(C).

When ρ restricted to Gal(F/FpF ) has no trivial factors, then H0(C, ρ) and
H2(C, ρ) vanish and so the L-function is a polynomial in q−s whose degree is
just the dimension of H1(C, ρ). This dimension can be calculated in terms of
the dimension and ramification properties of ρ and the genus of C.

2.6 Symmetries

For many interesting representations ρ, there is additional structure coming
from the fact that the space where ρ acts admits a Galois-equivariant pairing
(at least up to a twist). More precisely, suppose given an absolutely irreducible
ρ : Gal(F/F )→ GLn(E). Naively we might ask for a pairing

〈·, ·〉 : En × En → E

such that 〈ρ(g)v, ρ(g)v′〉 = 〈v, v′〉 for all g ∈ Gal(F/F ), but this is not possible
when the weight of ρ is non-zero. Instead we ask that

〈ρ(g)v, ρ(g)v′〉 = χ`(g)w〈v, v′〉

where χ`(g) gives the action of g on `-power roots of unity: ζg`n = ζ
χ`(g)
`n for

all ζ`n ∈ µ`n . When a non-zero (and thus non-degenerate) such pairing exists,
we say that ρ is self-dual of weight w. Moreover, the pairing must be either
symmetric (〈v, v′〉 = 〈v′, v〉) or skew symmetric (〈v, v′〉 = −〈v′, v〉); we say that
ρ is orthogonally self-dual or symplectically self-dual respectively.

For example, a finite order character χ : Gal(F/F )→ µd is self-dual if and
only if it is of order 2, in which case it is orthogonally self-dual of weight 0.
The representation of Gal(F/F ) on the dual of the Tate module of an elliptic
curve over F is symplectically self-dual of weight 1.

When ρ self-dual, then so is H1(C, ρ), but with the opposite sign and weight
w+ 1. In other words, when ρ is orthogonally (resp. symplectically) self-dual,
then there is a skew-symmetric (resp. symmetric) pairing on H1(C, ρ) which
satisfies 〈Frq v,Frq v

′〉 = qw+1〈v, v′〉.
Extending E if necessary, we may choose a basis of H1(C, ρ) in which

the matrix of the form is the standard one times qw+1 and then the matrix
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of Frobenius in this basis will be q(w+1)/2 times an orthogonal or symplectic
matrix. Thus extra structure on ρ puts severe restrictions on the action of
Frobenius.

At the level of L-functions, these restrictions are reflected in the functional
equations: when ρ is symplectically self-dual, the sign in the functional equa-
tion is ±1 (so that the sign sometimes forces vanishing at the central point)
whereas when ρ is orthogonally self-dual, the sign in the functional equation
is always +1 (so that the order of zero at the central point is even).

Note that when ρ is not self-dual, then the Frobenius matrix is a priori
q(w+1)/2 times a general matrix in GL and the functional equation relates two
different L-functions and so cannot force zeros at the central point.

3 Families of L-functions

In this section, we come to the raison d’être of the article, namely an ex-
planation of how families of L-functions over function fields give rise to well-
distributed collections of matrices in classical groups. Rather than attempting
to make precise general definitions, we consider several examples which we
hope will make the key points clear.

3.1 Arithmetic and geometric families

Let us fix a finite field Fq and consider all quadratic extensions of the rational
function field Fq(t), or equivalently, all quadratic characters

χ : Gal(Fq(t)/Fq(t))→ {±1}.

We exclude as trivial the unique character χ factoring through Gal(Fp/Fq)
which corresponds to the extension Fq2(t). We want to make statistical state-
ments about the L-functions L(χ, s) and to do so, the most natural way to
partially order them is by the genus of the corresponding field F or what
amounts to the same thing, the degree of the conductor of χ.

To keep things as simple as possible, we assume that the characteristic p
of Fq is > 2. In this case, the conductor of χ can be thought of as the set of
p where χ is ramified and the degree of the conductor of χ is just the sum of
the degrees of the places p in the conductor. The connection with the genus
is given by the Riemann-Hurwitz formula: g = (deg(Cond(χ))− 2)/2.

There are finitely many χ with conductor ≤ N (the number is of the order
qN as N → ∞) and so we may consider some quantity associated to L(χ, s),
such as the height of its lowest zero or the spacings between zeros, average
over those χ of conductor ≤ N , and then take a limit as N →∞. This set-up
is entirely analogous to the situation over Q or a number field and we call
this family and ones like it arithmetic. It seems likely that many of the results
known in the number field situation (e.g., on moments) could be treated in this
situation as well, by analogous methods. More ambitiously, Katz and Sarnak
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[KS99a] have made several conjectures on arithmetic families which are open
and which currently seem just as inaccessible as their number field analogues.

Considerably more can be done in the function field situation if we change
the problem slightly. Namely, let us give ourselves the freedom to vary the
constant field Fq as well: We consider quadratic extensions of Fqn(t) or equiv-

alently quadratic characters χ : Gal(Fqn(t)/Fqn(t)) → {±1}, again excluding
the character corresponding to Fq2n(t). The number of such characters with
conductor of degree ≤ N is of the order qnN . We form the average over this
set of some quantity associated to L(χ, s) and then take a limit as n → ∞.
This already gives interesting statements, but we may also take a second limit
as N → ∞. The advantage of first passing to the limit in n is that we get
an infinite collection of L-functions parameterized by a single algebraic variety.
For this reason we call such families geometric.

Let us explain how this parameterization comes about, still assuming for
simplicity that p > 2. In this case, any quadratic extension F of Fqn(t) can
be obtained by adjoining the square root of a polynomial f ∈ Fqn [t]. If f
is square free the degree of the conductor of χ is essentially the degree of
f . (More precisely, it is deg(f) if deg(f) is even and deg(f) + 1 if deg(f)
is odd.) For simplicity we restrict to monic polynomials f ; the set of monic
polynomials of degree N is naturally an affine space of dimension N (using the
coefficients of the polynomial as coordinates) and the set of square-free monic
polynomials is a Zariski open subsetX ⊂ AN . Thus we have a natural bijection
between certain quadratic characters of conductor N of Gal(Fqn(t)/Fqn(t)) and
X(Fqn), the points of X with coordinates in Fqn . We write χf for the character
associated to f ∈ X(Fqn). This geometric structure allows one to bring the
powerful tools of arithmetical algebraic geometry to bear, with decisive results.

3.2 Variation of L-functions

We continue with the example of L-functions attached to quadratic characters
over Fqn(t). As we explained in Section 2, L(χf , s) is the numerator of the
zeta-function of the hyperelliptic curve C → P1 corresponding to the quadratic
extension F = Fqn(

√
f)/Fqn(t) cut out by χf and it can be computed as the

characteristic polynomial of Frobenius on a cohomology group. In particular,
there is a symplectic matrix Af ∈ Sp2g(Q`), well-defined up to conjugacy, such

that L(χf , s) = det(1 − qn(1/2−s)Af ). Thus we have a map from X(Fqn) to
conjugacy classes of symplectic matrices.

(The reader uncomfortable with cohomology may proceed as follows: for
each point in f ∈ X(Fqn) we may form the corresponding L-function L(χf , s) =∏

(1− αiqn(1/2−s)). The αi are algebraic integers with absolute value 1 in any
complex embedding and the collection of them is invariant under αi 7→ α−1

i .
There is thus a well-defined conjugacy class of symplectic matrices Af so that
the αi are the eigenvalues of Af . Of course the preceding sentence is equally
true with “symplectic” replaced by “orthogonal” or “unitary”; the virtue of
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the cohomological approach is that it explains why symplectic matrices are the
natural choice.)

The first main result is that in a suitable sense, these conjugacy classes
become equidistributed as n→∞. To make this more precise, we use complex
matrices and the compact unitary symplectic group USp2g. Namely, we use

the fixed embeddings Q ↪→ C and Q ↪→ Q` to view `-adic matrices as complex
matrices. The Weyl unitarian trick and the Peter-Weyl theorem imply that
the conjugacy class of Af in Sp2g(C) meets the maximal compact subgroup
USp2g in a unique USp2g-conjugacy class. We write θf for any element of
this class. The statement of equidistribution is that as n → ∞, these classes
become equidistributed with respect to Haar measure. More precisely, for any
continuous, conjugation invariant function h on USp2g, we have

∫

USp2g

h dµHaar = lim
n→∞

1

|X(Fqn)|
∑

f∈X(Fqn )

h(θf ).

There is a more precise statement giving the rate of convergence:
∣∣∣∣∣∣

∫

USp2g

h dµHaar −
1

|X(Fqn)|
∑

f∈X(Fqn )

h(θf )

∣∣∣∣∣∣
< Cq−n/2

where C is a constant depending only on X and h.

3.3 Other families

We consider two other examples of geometric families giving rise to general
matrices and orthogonal matrices.

First we consider families of cubic L-series. More precisely, fix an integer
d and consider the set of monic polynomials in x of degree d with coefficients
in extensions of the finite field Fq where q ≡ 1 (mod 3). The set of all such
is naturally the affine space of dimension d, with coordinates given by the
coefficients:

f = xd + a1x
d−1 + · · ·+ ad−1x+ ad ↔ (a1, . . . , ad) ∈ Ad(Fqn).

We let X ⊂ Ad be the Zariski open subset corresponding to polynomials with
distinct roots, so that X is obtained from Ad by removing the zero set of
the discriminant, a polynomial in a1, . . . , ad. For each extension Fqn of Fq

and each f ∈ X(Fqn), the curve with affine equation y3 = f(x) is a cubic
Galois covering of P1 corresponding to a cubic Galois extension of function
fields F/Fqn(t). There are two non-trivial characters of Gal(F/Fqn(t)), which
we denoted by χf and χ−1

f . (We will not explain the details here, but there
is a consistent way to choose which is χf and which is χf−1 .) The character
χf gives rise to an L-function L(χf , s) and, via the cohomological machinery
discussed in the previous section, to a well-defined conjugacy class of matrices
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Af in GLN(Q`) where N = d− 2 and, for convenience, ` ≡ 1 (mod 3). As we
noted in Section 2.3, for cubic characters Poincaré duality and the functional
equation link two distinct groups or L-functions and so there is no geometric
reason for the Frobenius matrices to lie in a small group and in fact they
do not. By results of Katz and the general machinery sketched below, for
all sufficiently large d, the Frobenius conjugacy classes are equidistributed in
an algebraic group containing the algebraic group SLN over Q` with finite
index. As before, one makes this precise by using embeddings and Lie theory
to deduce for each f ∈ X(Fqn) a well-defined conjugacy class θf in a compact
Lie group G with SUN ⊂ G ⊂ UN such that

L(χf , s) = det
(
1− qn(1/2−s)θf

)
=

N∏

i=1

(1− αiqn(1/2−s))

where the αi are the eigenvalues of θf . The equidistribution statement is then
that ∣∣∣∣∣∣

∫

G

h dµHaar −
1

|X(Fqn)|
∑

f∈X(Fqn )

h(θf )

∣∣∣∣∣∣
< Cq−n/2

for any continuous, conjugation-invariant function h on G.
For an example of an orthogonal family, we consider the family of quadratic

twists of an elliptic curve. More precisely, assume that p > 3 and fix an elliptic
curve E over Fq(t) defined by a Weierstrass equation

y2 = x3 + ax+ b

with a, b ∈ Fq(t). We assume that the j-invariant of E is not in Fq. Fix a
degree d. For each monic square-free polynomial f ∈ Fqn [x], we may form the
quadratic twist Ef of E, with equation

fy2 = x3 + ax+ b (3.1)

and its L-function L(Ef , s). If we assume that the zeros of f are disjoint
from the points where E has bad reduction, then the degree of L(Ef , s) as a
polynomial in qn is N = 2d+c where c is a constant depending only on E. Let
X ⊂ Ad be the Zariski open set whose points over Fqn are the monic, square-
free polynomials f ∈ Fq[x] with zeros disjoint from the primes dividing the
discriminant of E. The cohomological machinery gives us, for each f ∈ X(Fqn),
an orthogonal matrix Af ∈ ON(Q`), well-defined up to conjugacy, such that

L(Ef , s) = det
(
1− qn(1−s)Af

)
.

As before, using the embeddings and Lie theory we deduce a conjugacy class
θf in the compact group ON(R). Under further hypotheses on E which we
do not discuss one may conclude that in fact θf ∈ SON(R). (We make these
hypotheses only to simplify the equidistribution statement below.) Results of
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Katz and Deligne then say that the classes θf are equidistributed in the sense
that ∣∣∣∣∣∣

∫

SON (R)

h dµHaar −
1

|X(Fqn)|
∑

f∈X(Fqn )

h(θf )

∣∣∣∣∣∣
< Cq−n/2

for any continuous, conjugation-invariant function h on SON(R).

3.4 Idea of proofs

We give a very brief sketch of the main ideas behind the proofs of the equidis-
tribution statements above.

The first ingredient is monodromy. Let X be the variety parameterizing
the family under study. Then we have the fundamental group π1(X), which is
a quotient of the absolute Galois group of the function field of X over Fq and
which gives automorphisms (“deck transformations”) of unramified covers of
X. There is a subgroup πgeom1 (X) ⊂ π1(X) such that

π1(X)/πgeom1 (X) ∼= Gal(Fp/Fq).

The cohomological machinery gives rise to a representation ρ : π1(X) →
GLN(E) (here E is some finite extension of Q`) such that for each point
f ∈ X(Fqn) with Frobenius conjugacy class Frf ∈ π1(X), we have ρ(Frf ) ∈
GLN(E) which is the conjugacy class associated to the L-function named by f .
Attached to ρ are two monodromy groups Ggeom ⊂ Garith. These are defined
as the Zariski closures of the images of ρ on πgeom1 (X) and π1(X) respectively.
A basic result of Deligne says that Ggeom is a semi-simple algebraic group over
E. When there is extra structure (i.e., a pairing), then we have an a priori
containment Garith ⊂ Sp or O. In favorable cases one can establish by geo-
metric methods a lower bound Sp or O or SL ⊂ Ggeom and therefore equalities
Ggeom = Garith = Sp or O or SL. (Here we are glossing over several techni-
calities regarding the difference between Ggeom and Garith and between O and
SO.) Part of Katz-Sarnak [KS99b, Chaps. 10-11], most of Katz [Kat02], and
several other works of Katz are devoted to these kinds of calculations.

The second main ingredient is a very general equidistribution result of
Deligne that says that whatever the arithmetic monodromy group is, the Frobe-
nius classes are equidistributed in it. More precisely, forming classes θf in a
compact Lie group G associated to Garith and f ∈ X(Fqn), we have

∣∣∣∣∣∣

∫

G

h dµHaar −
1

|X(Fqn)|
∑

f∈X(Fqn )

h(θf )

∣∣∣∣∣∣
< Cq−n/2

for all continuous, conjugation-invariant functions h on G. This equidistribu-
tion result was proven as a consequence of the Weil conjectures [Del80] and is
explained in Katz-Sarnak [KS99b, Chap. 9].
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3.5 Large N limits

Another part of the story, the part related to classical random matrix theory,
relates to statistical measures of eigenvalues in the large N limit. More pre-
cisely, given an N × N unitary matrix with eigenvalues e2πiφj with 0 ≤ φ1 ≤
· · · ≤ φN < 1 one forms a point measure on R with mass 1/N at each of the
normalized spacings N(φ2−φ1), N(φ3−φ2), . . . , N(φN−φN−1), N(1+φ1−φN).
Averaging this measure over UN (with respect to Haar measure) yields a mea-
sure on R and it turns out that one may take the limit as N →∞ and arrive
at a measure on R which is absolutely continuous with respect to Lebesgue
measure and has a real analytic density function. Similar results hold for
other families of classical groups and it turns out that the measure obtained is
the same for the symplectic groups Sp2N and the orthogonal groups O2N and
O2N+1 (where in the latter case one ignores the forced eigenvalue 1).

Katz and Sarnak also consider other statistical measures of eigenvalues, for
example the placement of the eigenvalue closest to 1. In this case there is again
a scaling limit as N →∞ but now the resulting measure on R depends on the
family of classical groups considered. For example, the density function for
the symplectic family vanishes at 0, indicating that eigenvalues of symplectic
matrices are “repelled” from 1, whereas this is not the case for the unitary and
orthogonal families.

These results are purely Lie-theoretic and do not involve any algebraic
geometry. We will not attempt to give any details here, but simply refer to
Katz-Sarnak [KS99b].

For an example of the application of this in the function field context,
we consider families Xg as in Section 3.2 parameterizing quadratic characters
χ corresponding to curves C → P1 of genus g. Combining equidistribution
results with theorems on large N limits, one sees that integrals with respect
to the large N limit measure may be computed using Frobenius matrices.
More precisely, suppose that ν1 is the measure on R associated to the suitably
normalized location of the eigenvalue nearest 1 for symplectic matrices. Then
we have ∫

R

h dν1 = lim
g→∞

lim
r→∞

1

|Xg(Fr)|
∑

f∈Xg(Fr)

h(φ1(θf ))

for all continuous, compactly supported functions h on R, where θf is the sym-
plectic matrix associated to f , φ1(θf ) is the normalized angle of its eigenvalue
closest to 1, and r tends to ∞ through powers of q.

The only point we want to make here is that Katz and Sarnak conjecture
that results like this should be true without taking the limit over large finite
fields. In other words, one should have∫

R

h dν1 = lim
g→∞

1

|Xg(Fq)|
∑

f∈Xg(Fq)

h(φ1(θf ))

This conjecture looks quite deep and will probably require new ideas going
beyond the cohomological formalism.
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3.6 Applications

We briefly mention three applications to arithmetic of the ideas around func-
tion fields and random matrices.

The first application is to guessing the symmetry type of a family of L-
functions over a number field. The idea, roughly speaking, is to find a function
field analogue of the given family and inspect the cohomology groups comput-
ing the L-functions to see whether there is extra symmetry present. If so, the
symmetry group should be O, SO, or Sp; if not then it should contain SL.
For example, if one looks at the family of quadratic Dirichlet characters over
Q, the function field analog is the family of quadratic characters considered in
Section 3.1 and so one expects symplectic symmetries. Of course the symplec-
tic group itself is nowhere in sight in the number field context, but one does
find computationally that the statistics of low lying zeros obey the distribu-
tions associated with symplectic groups. See Katz-Sarnak [KS99a] for more
on this and other examples.

The second application is to an analogue of the Goldfeld conjecture. Roughly
speaking, this conjecture asserts that in the family of quadratic twists of an
elliptic curve over Q, 50% of the curves should have rank 0 and 50% should
have rank 1. The most direct function field analogue would concern twists Ef

of a given elliptic curve, as in Equation 3.1 above, where f ∈ Fq[x] and it
would assert that

lim
d→∞

|{f ∈ Fq[x]| deg(f) ≤ d, ..., and RankEf (Fq(t)) = 0}|
|{f ∈ Fq[x]| deg(f) ≤ d, and ...}| =

1

2

where “...” stands for conditions on f , namely that f be square free and have
zeros disjoint from the points where E has bad reduction. Similarly for rank 1.
There are also conjectures where RankEf (Fq(t)) is replaced by ords=1 L(Ef , s).
These conjectures are completely open, although there are some recent nice
examples of Chris Hall [Hal04]. But one can do more by allowing ground field
extensions. More precisely, Katz proves in [Kat02] that for large d,

lim
n→∞

|{f ∈ Fqn [x]| deg(f) ≤ d, ..., and ords=1 L(Ef , s) = 0}|
|{f ∈ Fqn [x]| deg(f) ≤ d, and ...}| =

1

2

under the assumption that E has at least one place of multiplicative reduc-
tion. (This hypothesis is needed to ensure that the monodromy group is the
full orthogonal group O, rather than SO.) Similar results hold for analytic
rank 1 and, with suitable modifications, for cases when the monodromy group
is SO. One can deduce results for algebraic ranks by using the inequality
RankEf (Fqn(t)) ≤ ords=1 L(Ef , s) which is known in the function field case.

The connection between equidistribution and these results is that with
respect to Haar measure, 1/2 of the matrices in the orthogonal group have
eigenvalue 1 with multiplicity 1 and 1/2 have eigenvalue 1 with multiplicity
0. Thus when the matrices computing the L-functions L(Ef , s) are equidis-
tributed in O, then we expect a simple zero at s = 1 for about 1/2 of the f



Function fields and random matrices 139

and no zero for about 1/2 of the f . See the introduction of [Kat02] for a lucid
discussion of these results and the more general context, including cases where
the monodromy is SO.

The third application is to non-vanishing results for twists. Given a func-
tion field F over Fq, a Galois representation ρ of Gal(F/F ), and an integer d >
1, one expects to be able to find infinitely many characters χ : Gal(F/F )→ µd
of order d such that L(ρ ⊗ χ, s) does not vanish at some given point s = s0,
for example the center of the functional equation. There are few general re-
sults in this direction, but if we modify the problem in the usual way then
one can prove quite general theorems. Namely, one considers characters χ
of Gal(F/FqnF ) for varying n and with restrictions on the ramification of χ
(for example, that the degree of the conductor of χ be less than some D and
the ramification of χ be prime to the ramification of ρ). Then under mild
hypotheses, one finds the existence of infinitely many characters χ (indeed a
set of positive density in a suitable sense) with L(ρ⊗ χ, s) non-vanishing at a
given point s0. The precise statements involve both non-vanishing and simple
vanishing because there may be vanishing forced by functional equations. The
connection with equidistribution is that in any of the classical groups O, Sp,
or SL, the set of matrices with a given number as eigenvalue has Haar measure
zero (except of course for orthogonal matrices and eigenvalues ±1, which are
related to forced zeros). See [Ulm05] for this and more general non-vanishing
results.

4 Further reading

In this section we give a personal and perhaps idiosyncratic overview of some
of the literature covering the technology implicit in this article.

For a treatment of number theory in function fields very much parallel to
classical algebraic number theory and requiring essentially no algebraic geom-
etry, I recommend [Ros02].

For the basic theory of curves over an algebraically closed ground field, a
standard reference in use for generations now is [Ful89]. This gives a student-
friendly introduction, with all necessary algebraic background and complete
details, of the basic theory of curves over an algebraically closed field. Weil’s
“Foundations” [Wei62] gives a complete and functional theory for algebraic
geometry over arbitrary base fields, but it is quite difficult to read and the lan-
guage has fallen into disuse—the much more powerful and flexible language of
schemes is completely dominant. Various books on diophantine geometry and
elliptic curves give short accounts, often incomplete or not entirely accurate,
of algebraic geometry over general fields. For careful and complete expositions
of the theory of curves over general fields, including the ζ-function and the
Riemann hypothesis, two popular references are [Gol03] and [Sti93].

For the basics of general, higher dimensional algebraic geometry, there is
no better reference than the first part of [Sha77]. This book gives a masterful
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exposition of the main themes and goals of the field with excellent taste. Part
II of this work, on schemes and complex manifolds, is interesting but not
sufficiently detailed to be of use as a primary reference.

One can get an excellent idea of some of the analogies between curves over
finite fields and rings of integers in number fields, analogies which motivate
many of the ideas in modern arithmetical algebraic geometry, from [Lor96].
Studying this work would be a good first step toward schemes, giving the
student a valuable stock of examples and tools.

For an introduction to schemes from many points of view, in particular that
of number theory, the best reference by far is a long typescript by Mumford
and Lang which was meant to be a successor to “The Red Book” (Springer
Lecture Notes 1358) but which was never finished. These notes have excellent
discussions of arithmetic schemes, Galois theory of schemes, the various flavors
of Frobenius, flatness, issues of inseparability and imperfection, as well as a
very down to earth introduction to coherent cohomology. (Some energetic
young person would do the community a great service by cleaning up and
TeXing these notes.) Some of this material was adapted by Eisenbud and
Harris [EH00], including a nice discussion of the functor of points and moduli,
but there is much more in the Mumford-Lang notes.

Another excellent and complete reference for the scheme-theoretic tools
needed for arithmetical algebraic geometry is [Liu02] which has the virtue of
truly being a textbook, with a systematic presentation and lots of exercises.

To my knowledge there is no simple route into the jungle of étale coho-
mology. Katz’s article [Kat94] in the Motives volume gives a clear and suc-
cinct statement of the basics, and Iwaniec and Kowalski [IK04, 11.11] give
a short introduction to some basic notions with applications to exponential
sums. To go deeper, I recommend SGA4 1

2
[SGA4-1/2] for the main ideas

and Milne’s masterful text [Mil80], supplemented by the notes on his site
(http://jmilne.org), for a systematic study.

For wonderful examples of this technology in action I suggest [KS99b] and
the papers of Katz referred to there, including [Kat02] (which is the final
version of the entry [K-BTBM] in the bibliography of [KS99b]).

Finally, for an in depth introduction to connections between random matrix
theory and number theory, I recommend [MHS05], the proceedings of a Newton
Institute school on the subject.
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Some applications of symmetric
functions theory in random matrix

theory

Alex Gamburd ∗

Dedicated to Persi Diaconis on the occasion of his 60th birthday

1 Introduction

This paper gives a brief and informal introduction to some applications of
symmetric functions theory in random matrix theory. It is based on the lecture
given as part of the program “Random matrix approaches in number theory”
held at the Newton Institute from February to July of 2004; I would like to
take this opportunity to thank the organizers for making this program such a
wonderful and memorable one.

We begin, in section 2, by presenting a self-contained and fairly complete
proof of the Weyl Integration Formula [37], the basic tool for averaging over
U(n), following closely Weyl’s original derivation. In the course of the proof
we also provide a simple qualitative explanation for “quadratic repulsion” of
the eigenvalues of unitary matrices. As a straightforward application of the
Weyl Integration Formula we derive a simple but striking result of Rains [31]
on high powers of unitary matrices.

Following the organizers’ brief, in the exposition below I assume no prior
knowledge of symmetric function theory. A crucial role in this theory is played
by Schur functions and each section provides a glimpse of a different facet
of their many-sided nature. In section 3 we introduce Schur functions and
prove that they describe irreducible characters of the unitary group, following
closely the derivation of Weyl in his classical book [37]. In section 4 we prove
asymptotic normality of traces of powers of random unitary matrices as a
consequence of Schur-Weyl duality, following Diaconis and Shahshahani [15],
who pioneered the symmetric functions theory approach. In section 5, using
an alternative definition of Schur functions via Jacobi-Trudi identity, we derive
the formula of moments of characteristic polynomials; section 7 is devoted to
exploiting some of the consequences of the combinatorial definition of Schur
functions.

∗The author was supported in part by senior visiting fellowship at the Isaac Newton
Institute for Mathematical Sciences and by by NSF grants DMS-0111298 and DMS-0501245.
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With the exception of section 6, where we sketch a derivation of the for-
mula for ratios of averages of characteristic polynomials for symplectic group,
we restrict our attention to the unitary group and refer to the original papers
for derivations pertaining to other compact groups. We also restrict ourself
to those aspects of random matrix theory which featured in “Random matrix
approaches in number theory” and do not address at all many spectacular
applications of symmetric functions and random matrices to problems involv-
ing random permutations, referring the reader to beautiful surveys [1, 30] and
references therein. The books by Macdonald [27] and Stanley [35] provide a
comprehensive introduction to symmetric functions theory; the book by Bump
[3] is an excellent reference for representation theory of Lie groups.

2 Weyl Integration Formula

2.1 Unitary Group

Let U(n) denote the group of unitary matrices, that is n × n complex ma-

trices M such that M
t
M = I; equivalently these are matrices M such that

〈Mu,Mv〉 = 〈u, v〉 for all u, v ∈ C, where

〈u, v〉 =
n∑

j=1

uivj

is the standard hermitian inner product on Cn. The group G = U(n) is a
compact connected Lie group with the Lie algebra u(n) consisting of n × n
skew-hermitian matrices, that is complex matrices X satisfying

X
t
+X = 0. (2.1)

Condition (2.1) arises by differentiating with respect to t the defining condition
of U(n)

〈etXu, etXv〉 = 〈u, v〉 for any u, v ∈ Cn,
and then evaluating at t = 0 to get

〈Xu, v〉+ 〈u,Xv〉 = 0;

consequently

〈(X t
+X)u, v〉 = 0 for any u, v ∈ Cn,

which implies (2.1).
Following the standard convention we denote by

adB(C) = [B,C] = BC − CB (2.2)

and for g ∈ U(n)
Adg(B) = gBg−1. (2.3)
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We have a fundamental relation:

Ad exp tB = exp(tadB). (2.4)

The subgroup of unitary diagonal matrices A (Cartan subgroup) is abelian
and isomorphic to TN , the N -fold power of T, the unit circle in C. An element
a ∈ A is of the form

a = diag(eiθ1 , . . . , eiθn).

By elementary linear algebra every unitary matrix is conjugate to a diagonal
matrix, that is for every g ∈ U(n) we can write

g = hah−1 (2.5)

for h ∈ U(n) and a ∈ A. A function f on G is a class function if it is constant
on conjugacy classes, that is f(h−1gh) = f(g). Denoting the eigenvalues of g
by xj = eiθj , for a class fucntion f we have

f(g) = f(a) = f(diag(eiθ1 , . . . , eiθn)),

where a is an element in A conjugate to g.

2.2 Weyl Integration Formula

Theorem 1 (Weyl Integration Formula [37]). The expression for normal-
ized Haar measure on U(n) in terms of eigenangles θj is given by

1

(2π)n
1

n!

∏

16 k<l6 n
|eiθk − eiθl |2 dθ1 . . . dθn. (2.6)

The expectation of a class function ϕ(M) = ϕ(eiθ1 , . . . , eiθn) with respect to
Haar measure dM ,

EU(n)ϕ(M) =

∫

U(n)

ϕ(M)dM

is given by:

1

(2π)n
1

n!

∫ 2π

0

. . .

∫ 2π

0

ϕ(eiθ1 , . . . , eiθn)
∏

16 k< l6 n
|eiθk − eiθl|2 dθ1 . . . dθn. (2.7)

Proof The map

ρ : A× U(n)→ U(n), ρ(a, g) = gag−1 (2.8)

is surjective; further it is clear that

ρ(a, gb) = ρ(a, g) for b ∈ A. (2.9)
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Hence the map ρ factors to

ρ̃ : A× (U(n)/A)→ U(n). (2.10)

The factored map ρ̃ is generically finite to one. On the open dense set of
matrices with n distinct eigenvalues it is n! to one covering map: two diagonal
matrices define the same conjugacy class in U(n) if and only if one can be
turned into the other by permuting the diagonal entries.

In replacing h in equation (2.5) by hb as indicated in equation (2.9) the ma-
trix g will stay unaltered if and only if b commutes with a = diag(x1, . . . , xn).
If all the eigenvalues xi are distinct, b has to be diagonal. However, the situa-
tion is different for singular matrices, that is matrices for which two eigenvalues
coincide. Rewriting the required commutativity relation ab = ba in the form

xibik = bikxk or bik(xi − xk) = 0

we see that if, for example, x1 = x2 the matrix b is allowed to be of the form



b11 b12

b21 b22

b3

. . .

bn



.

We thus see that the singular matrices form a manifold of dimension, not of
one, as one might expect, but of three dimensions less. Now one can think of
ρ̃ as defining the “polar coordinates” in U(n). Consequently singular elements
are like the “center of polar coordinates in three-dimensional space”. The
formula for the volume element in three-space in terms of polar coordinates
contains the factor r2 which vanishes in second order at the origin. For the
same reason, the density in the Weyl integration formula must vanish in the
second order with eiθ1 − eiθ2 , i. e. it must contain the factor |eiθ1 − eiθ2 |2.
The same holds for all other pairs eiθj , eiθk . This is a qualitative reason for
“quadratic repulsion” of eigenvalues in unitary group.

Returning to (2.10), we can use ρ̃ to lift Haar measure dg on U(n) up to
A× (U(n)/A). That is we can find unique measure dµ(a, ğ) on A× (U(n)/A)
such that the set where ρ̃ is singular has measure zero and on the set where ρ̃
is finite to one we have the following formula for a function f on A×(U(n)/A):

∫

A×(U(n)/A)

f(a, ğ)dµ(a, ğ) =

∫

U(n)


 ∑

x∈ρ̃−1(g)

f(x)


 dg. (2.11)

The coset space U(n)/A also possesses a left-invariant measure dğ. Since
Haar measure on U(n) is also conjugation invariant we see that dµ must be a
product measure of the form

dµ(a, ğ) = dν(a)dğ.
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Since we are dealing with smooth manifolds and smooth maps, dν is abso-
lutely continuous with respect to Haar measure da on A:

dν(a) = ν(a)da

for an appropriate function ν(a).
Now computation of ν(a) boils down to computing the Jacobian of the map

ρ̃; we will show below that for a = diag(x1, . . . , xn) it is given by

ν(a) = c
∏

1≤i<j≤n
|xi − xj|2. (2.12)

Next, if in (2.11) we take the function f to be a pull-back from U(n) by ρ̃:

f(a, ğ) = ϕ(ρ̃(a, ğ)) = ϕ(ğağ−1),

for some function ϕ on U(n); we have in light of the discussion above

n!

∫

U(n)

ϕ(g)dg =

∫

A×(U(n)/A)

ϕ(ğağ−1)ν(a)dadğ.

If further ϕ is a class function, taking into account (2.12) we obtain
∫

U(n)

ϕ(g)dg =
c

n!

∫

A

ϕ(x1, . . . , xn)
∏

1≤i<j≤n
|xi − xj|2da.

Now the constant c is easily computed to be equal to 1 (by taking function ϕ
identically equal to 1) and so we obtain the thought-after equation (2.7).

It remains to prove (2.12), that is to compute the Jacobian of the mapping
ρ̃ given by

ρ̃(a, ğ) = gag−1,

where ğ ∈ U(n)/A. To this end we make use of the Lie algebra and the
exponential map to parametrize a neighborhood of a ∈ A and of ğ ∈ U(n)/A.
The Lie algebra of A, which we’ll denote by a , consists of diagonal matrices
diag(ia1, . . . , ian) where ai are real. The neighborhood of a ∈ A is parametrized
by α 7→ eα for α ∈ a. A neighborhood of ğ is parametrized by β 7→ geβA, with
β ∈ a⊥, where a⊥ is an orthogonal complement of a in u(n).

So we have parametrized the neighborhood of (a, ğ) by

(α, β) 7−→ (aeα, geβA)

and with this parametrization the map ρ̃ is given by

(α, β) 7−→ geβaeαe−βg−1.

Translating on the left by a−1g−1 and on the right by g, and using the
fact that the Jacobian of translations is one, we are reduced to computing the
Jacobian of the map

(α, β) 7−→ a−1eβaeαe−β.
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Now recalling (2.2), (2.3) and (2.4) we see that the differential of this map
is given by (1 − ada|a⊥), and since the Jacobian is the determinant of the
differential, we have that

ν(a) = det(1− ada|a⊥).

Finally, recalling (2.1) we note that concretely a⊥ is the space of skew-
symmetric n × n matrices with zeros on the diagonal. Consequently, if a =
diag(x1, . . . , xn) we have that

det(1− ada|a⊥) =
∏

i6=j
(1− xix−1

j ) =
∏

1≤i<j≤n
|xi − xj|2,

where the last equality follows from |xi| = 1 for all i. This completes the proof
of (2.12) and consequently also the proof of Weyl integration formula. 2

2.3 High Powers of Unitary Matrices

We now use Weyl integration formula to prove, following Rains [31], the fol-
lowing result.

Proposition 1 (Rains [31]). If M is Haar distributed on U(N) and n is
any integer n ≥ N , then the eigenvalues of Mn are independent and uniformly
distributed on the unit circle S1.

Proof Denoting the eigenvalues of M by eiθj , let Yj = einθj . We want to
show that (Y1, . . . , YN) are i.i.d. uniform on S1. By the method of moments
it is enough to show that for any a = (a1, . . . , aN) and b = (b1, . . . , bN) with
ai ∈ N and bi ∈ N we have

EU(N)

N∏

j=1

Y
aj
j

N∏

k=1

Yk
bk

= EU(N)

N∏

j=1

Y
aj−bj
j = δab. (2.13)

Now by Weyl integration formula,

EU(N)

N∏

j=1

Y
aj−bj
j =

1

(2π)N
1

N !

∫ 2π

0

. . .

∫ 2π

0

e
PN
j=1 inθj(aj−bj)×

∏

1≤k<l≤N
(eiθk − eiθl)(e−iθk − e−iθl)dθ1 . . . dθN .

(2.14)

We now examine the expression in the second line of (2.14). For example,
for N = 2 it is given by

(eiθ1 − eiθ2)(e−iθ1 − e−iθ2) = 2− eiθ1e−iθ2 − e−iθ1eiθ2 .
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In general, ∏

1≤k<l≤N
(eiθk − eiθl)(e−iθk − e−iθl)

is a Laurent polynomial in eiθj of degree at most (N − 1) in any given eiθj .
Now it is easy to see that for n ≥ N only the constant term can contribute,
proving (2.13) and consequently Proposition 1. 2

Proposition 1 implies in particular the following result

Corollary 1. The distribution of Tr(Mn) for n ≥ N is exactly the same as∑N
j=1 Xj where Xj are independent random variables uniformly distributed on

S1.

The case of n small (relative to N) will be dealt with in Theorem 2 below.
For the discussion of Corollary 1 in the context of the Riemann zeta function
see the paper by Montgomery and Soundararajan [29].

3 Schur functions as characters of the unitary

group

The reader is likely to have encountered the elementary symmetric functions

er(x1, . . . , xN) =
∑

i1<···<ir
xi1 . . . xir (3.1)

and power sum symmetric functions

pr(x1, . . . , xN) =
N∑

i=1

xri . (3.2)

To generalize slightly we introduce partition notation.
A partition λ of a nonnegative integer n is a sequence (λ1, . . . , λr) ∈ Nr

satisfying λ1 > . . . > λr and
∑
λi = n. We call |λ| = ∑

λi the size of λ. The
number of parts of λ is the length of λ, denoted l(λ). Write mi = mi(λ) for
the number of parts of λ that are equal to i, so we have λ = 〈1m12m2 . . . 〉.

The Young diagram of a partition λ is defined as the set of points (i, j) ∈ Z2

such that 1 6 i 6 λj; it is often convenient to replace the set of points above
by squares. The conjugate partition λ′ of λ is defined by the condition that the
Young diagram of λ′ is the transpose of the Young diagram of λ; equivalently
mi(λ

′) = λi − λi+1.
In the figure we exhibited a partition λ = (5, 5, 3, 2) = 〈10213152〉; λ ` 15

and l(λ) = 4.

Now given a partition λ ` N , we define

eλ(x1, . . . , xN) =
N∏

j=1

eλj(x1, . . . , xn) (3.3)



150 A. Gamburd

Young diagram of λ Young diagram of λ′

and similarly

pλ(x1, . . . , xN) =
N∏

j=1

pλj(x1, . . . , xN ). (3.4)

Both elementary symmetric functions eλ and power sum symmetric func-
tions pλ will be important in what follows. However the center stage is occupied
by Schur symmetric functions sλ whose classical definition is as a ratio of two
determinants

sλ(x1, . . . , xN) =
det
(
x
λj+N−j
i

)N
i,j=1

det
(
xN−ji

)N
i,j=1

. (3.5)

Schur functions arise as irreducible characters of the unitary group and we
now give a sketch of the derivation of this fact following the account in Weyl’s
classical book [37]; we hope this derivation makes it clear how natural the
expression (3.5) is.

Let M ∈ U(N) be a unitary matrix with eigenvalues eiθ1 , . . . , eiθN ; let xj =
eiθj . We wish to show that the irreducible characters ϕ of the unitary group
U(N) are given by Schur functions sλ. As a class function ϕ is a continuous
symmetric periodic function of the angles θj. Next,

ϕ(M) = ϕ(diag(eiθ1 , . . . , eiθN )),

where diag(eiθ1 , . . . , eiθN ) is a diagonal matrix conjugate to M . The subgroup
of unitary diagonal matrices A (Cartan subgroup) is abelian and isomorphic to
TN , the N -fold power of T, the unit circle in C. In case N = 1 the (irreducible)
representations are given by xm for integer m (recall that we use the notation
xj = eiθj). For N > 1 the characters are given by finite sums with nonnegative
integer coefficients of monomials

xm = xm1
1 . . . xmNN

where mi are integer exponents. To summarize: ϕ(x1, . . . , xN) is a symmetric
function of x1, . . . , xN given by

∑
c(m)xm, where the coefficients c(m) are

nonnegative integers.
Next we rewrite the expression in the Weyl Integration Formula as follows:

∏

j<k

|xj − xk|2 = ∆(x)∆(x),
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where

∆ =
∏

j<k

(xj − xk) = det(xN−ji )

is a Vandermonde determinant. Now ∆ is a skew-symmetric function of
x1, . . . , xN and consequently ϕ∆ is a skew-symmetric function as well. The
simplest possible skew-symmetric functions am(x) can be obtained by skew-
symmetrizing monomials xm:

am(x1, . . . , xN ) =
∑

w∈SN
εww(xm), (3.6)

where

w(xm) = x
mw(1)
1 . . . x

mw(N)
N

and

εw =

{
1 if w is even

−1 if w is odd.

Since am is skew-symmetric, i.e. w(am) = εw(am), we have am = 0 unless
all the mi are distinct. Hence we can assume that m1 > m2 > . . .mN ≥ 0 and
so m = λ+ δ where λ is a partition with l(λ) ≤ N and

δ = δN = (N − 1, N − 2, . . . , 0).

Since mj = λj +N − j, we get

am = aλ+δ = det
(
x
λj+N−j
i

)N
i,j=1

. (3.7)

Now since

1

(2π)N

∫ 2π

0

. . .

∫ 2π

0

eim1θ1 . . . eimNθN ein1θ1 . . . einNθNdθ1 . . . dθN

=

{
1 if m = n

0 otherwise,

we easily obtain

1

(2π)N

∫ 2π

0

. . .

∫ 2π

0

am(eiθ1 . . . eiθN )an(eiθ1 . . . eiθN )dθ1 . . . dθN

=

{
N ! if m = n

0 otherwise.

Returning to ϕ∆, we now write it as a sum of the functions am, with m
arranged in lexicographic order,

∑
c(m)am; the leading coefficient in this sum
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is necessarily a positive integer. But since ϕ is an irreducible character, we
have EUNϕϕ = 1, that is

1

(2π)N
1

N !

∫ 2π

0

. . .

∫ 2π

0

ϕ∆(eiθ1 . . . eiθN )ϕ∆(eiθ1 . . . eiθN )dθ1 . . . dθN

=
∑

c2(m) = 1,

which implies that we have only one term aλ+δ in the expansion of ϕ. This
proves that irreducible characters of U(N) are given by Schur function in
equation (3.5).

We record the crucial fact derived in this section as follows:

EUN
(
sλ(M)sµ(M)

)
=

{
1 if λ = µ and l(λ), l(µ) ≤ N

0 otherwise.
(3.8)

4 Frobenius-Schur duality & moments of traces

Frobenius-Schur duality is a relationship between irreducible representations of
the unitary group U(N) and the irreducible representations of the symmetric
group SK ; see [3] for a modern introduction. Both U(N) and SK act on the
K-fold tensor product

⊗K CN . The unitary group acts linearly:

g(v1 ⊗ v2 ⊗ . . . vK) = g(v1)⊗ g(v2)⊗ . . . g(vK),

where g ∈ U(N) and vj ∈ CN . Symmetric group acts by permuting the factors:

w(v1 ⊗ v2 ⊗ . . . vK) = vw−1(1) ⊗ vw−1(2) ⊗ . . . vw−1(K),

where w ∈ SK and vj ∈ CN . These actions clearly commute with each other
and the crucial fact is that under the joint action of U(N) × SK the space⊗K CN decomposes into direct sum

K⊗
CN =

∑

λ`K
l(λ)≤N

ρλ ⊗ σλ, (4.1)

where ρλ is a representation of U(N) and σλ representation of SK labelled by
λ.

We denote by χλµ the value of the irreducible character of the symmetric
group SK associated with λ on the µth conjugacy class. A consequence of
Frobenius-Schur duality is the following expression for power sum symmetric
functions (3.4) in terms of Schur functions (3.5):

pµ =
∑

λ`K
χλµsλ. (4.2)
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We sketch a proof of (4.2). Let w ∈ SK belong to conjugacy class µ and let
g in U(N) be a matrix with eigenvalues (x1, . . . , xN). We compute the trace
of w · g action on

⊗K CN in two ways. First, using (4.1) we obtain:

tr(w · g) =
∑

λ`K
l(λ)≤N

tr(w · g) ↓ρλ⊗σλ

=
∑

λ`K
l(λ)≤N

tr(w ↓σλ)tr(g ↓ρλ)

=
∑

λ`K
χλµsλ(x1, . . . , xN).

On the other hand, fixing a basis e1, . . . , eN in CN , and taking for g the
diagonal matrix g = diag(x1, . . . , xN), we have

w · g(ej1 ⊗ · · · ⊗ ejK ) = ejw−1(1)
⊗ · · · ⊗ ejw−1(K)

K∏

m=1

xjm ,

and therefore by direct computation we obtain that for a permutation w with
conjugacy type µ we have

tr(w · g) =
∑

1≤j1,...,jK≤N
jm=jw−1(m)

K∏

m=1

xjm = pµ(x1, . . . , xN),

establishing (4.2).

We now derive, using (4.2) and (3.8), the asymptotic normality of traces
of powers, following the approach of Diaconis and Shahshahani [15], see also
[12, 11]. For alternative derivations see Johansson [22] and Soshnikov [32].

Theorem 2. If M is chosen from Haar measure on UN , the traces of successive
powers have limiting Gaussian distributions: as N → ∞, for any fixed k and
Borel sets B1, . . . , Bk

P (TrM ∈ B1, . . . ,TrMk ∈ Bk)→
k∏

j=1

P (
√
j Z ∈ Bj), (4.3)

where Z is standard complex normal.

Theorem 2 follows by method of moments from the following Proposition:

Proposition 2. Consider a = (a1, . . . , al) and b = (b1, . . . , bl) with aj, bj
nonnegative natural numbers. Let Z1, . . . , Zn be independent standard complex
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normal variables. Then for N > max
(∑l

1 jaj,
∑l

1 jbj

)
we have

EUN
l∏

j=1

(TrM j)aj(TrM j)
bj

=

∫

UN

l∏

j=1

(TrM j)aj(TrM j)
bj
dM

= δab

l∏

j=1

jajaj! = E

(
l∏

j=1

(
√
jZj)

aj(
√
jZ̄j)

bj

)
. (4.4)

To prove Proposition 2 we first note that

TrM j = pj(e
iθ1 , . . . , eiθN ),

where pj are power sum symmetric functions defined in (3.2). Next, if µ =
〈1a1 . . . lal〉 we have

l∏

j=1

(TrM j)aj = pµ(eiθ1 , . . . , eiθN ) = pµ(M).

Now if µ is a partition of K and ν = 〈1b1 . . . lbl〉 is a partition of L, using
(3.8) and (4.2) we have:

EUN
l∏

j=1

(TrM j)aj(TrM j)
bj

= EUN
(
pµ(M)pν(M)

)

= EUN

(∑

λ`K
χλµsλ(M)

∑

τ`L
χτrsτ (M)

)

= δKL
∑

λ`K
χλµχ

λ
τ δ(`(λ) ≤ N).

When K ≤ N , all partitions of K appear and we can use the second
orthogonality relation for characters which we now recall. For any finite group
G with irreducible characters χi we have

∑

i

χi(g)χi(h) =

{
|Z(g)| if g and h are conjugate in G

0 otherwise
, (4.5)

where Z(g) is a centralizer of g. Now since for conjugacy class Cµ given by
µ = 〈1a1 . . . lal〉 we have Z(Cµ) =

∏
jajaj! we obtain that

δKLδµν

K∏

j=1

jajaj! = δab

∏
jajaj!

The last expression equals the joint mixed moments of
√
jZj by an easy

calculation, completing the proof of Proposition 2.
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5 Moments of characteristic polynomials

For certain functions f an alternative approach to computing the averages∫
U(N)

f(M)dM over the unitary group can be based on the Heine-Szegö formula

[36]:

1

(2π)N

∫ 2π

0

. . .

∫ 2π

0

N∏

j=1

f(eiθj)
∏

16 k6 l6 N
|eiθk − eiθl|2 dθ1 . . . dθN = DN(f).

(5.1)
Here DN(f) is the N ×N Toeplitz determinant with symbol f :

DN(f) = det
(
f̂(j − k)

)
06j,k6N

, (5.2)

where f̂(r) = 1
2π

∫ 2π

0
f(eirθ) dθ.

Johansson [22] gave a proof of Theorem 2 with a very sharp convergence
rate by using (5.1) and strong Szegö limit theorem for Toeplitz determinants
[21]; on the other hand, as explained in [4], Theorem 2 gives a new proof (and
some extensions) of the strong Szegö limit theorem.

In this section we will use Heine-Szegö formula (5.1) together with an al-
ternative definition of Schur functions furnished by Jacobi-Trudi identity:

sλ = det
(
eλ′i−i+j

)N
i,j=1

(5.3)

to derive the expression for the moments of the products of characteristic
polynomials of random unitary matrices PM(z), given by

PM(z) = det(M − zI) =
N∏

j=1

(eiθj − z). (5.4)

We refer the reader to [5] for derivations of the formulae for products and
ratios of characteristic polynomials from other classical groups using symmetric
functions theory.

It will be more convenient to work with polynomial

QM(z) = det(I +Mz), (5.5)

which is related to the characteristic polynomial PM(z) as follows:

QM

(
−1

z

)
=

(−1)N

zN
PM(z). (5.6)

Using Heine-Szegö formula (5.1) we have:

EUN
[
QM(z1) . . . QM(zl)QM(zl+1) . . . QM(zm)

]
=

1

(zl+1 . . . zm)N
DN(f), (5.7)
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with

f(t) =
1

tm−l

m∏

i=1

(1 + zit) =
∑

r>l−m
trer+m−l(z1, . . . , zm), (5.8)

where er are elementary symmetric functions (3.1). Now the Toeplitz determi-
nant with symbol (5.8) can be computed using the Jacobi-Trudi identity (5.3)
and is easily seen to be equal to

sNm−l(z1, . . . , zm),

where Nm−l is a partition consisting of m− l parts equal to N . We have thus
obtained the following result, first established in [7]:

Proposition 3. Notation being as above, we have

EUN
[
QM(z1) . . . QM(zl)QM(zl+1) . . . QM(zm)

]
=
sNm−l(z1, . . . , zm)

(zl+1 . . . zm)N
. (5.9)

In particular, setting all zj equal to 1, and setting l = k and m = 2k, we
have, using (5.6) and (5.9):

EUN |PM(1)|2k = sNk(1, . . . , 1︸ ︷︷ ︸
2k

).

Now sNk(1, . . . , 1︸ ︷︷ ︸
2k

) is a dimension of an irreducible representation of U(2k)

labelled by partition N k. The value of sλ(1, . . . , 1) can be computed from
(3.5) using l’Hopital rule to give for λ = (λ1, . . . , λn) the following formula,
known as Weyl dimension formula:

sλ(1, . . . , 1) =

∏
i<j(µi − µj)∏
i<j(i− j)

, (5.10)

where µi = λi + n− i. It is a nice exercise to deduce that the right-hand side
of (5.10) can be expressed in the following equivalent form:

sλ(1n) =
∏

u∈λ

n+ c(u)

h(u)
, (5.11)

where for a box u in a diagram λ, h(u) is a hook number of u and c(u) is a
content number of u, which we now define. Given a diagram λ and a square
u = (i, j) ∈ λ, the content of λ at u is defined by c(u) = j − i. A hook with a
vertex u is a set of squares in λ directly to the right or directly below u. We
define hook-length (also referred to as hook number) h(u) of λ at u by

h(u) = λi + λ′j − i− j − 1.

Equivalently, h(u) is the number of squares directly to the right or directly
below u, counting u itself once. For instance, in figure 5.1 we display hook
lengths for partition λ = (5, 5, 3, 2).
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1
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Figure 5.1:

Now it is easy to see, that for a partition λ = N k the product of hook
numbers is given by

N−1∏

j=0

(j + k)!

j!
,

whereas the product
∏

u∈λ(2k + c(u)) is given by

k∏

i=1

N∏

j=1

(2k − i+ j) =
N−1∏

j=1

(j + 2k)!

(j + k)!
.

Consequently we have

EUN |PM(1)|2k =
N−1∏

j=0

j!(j + 2k)!

(j + k)!2
, (5.12)

an expression first obtained (without restriction that k be an integer) by Keat-
ing and Snaith in [23] using Selberg’s integral. We will give a different expres-
sion as well as a combinatorial interpretation of (5.12) in the next section.

6 Averages of ratios of characteristic polyno-

mials

In this section we will sketch a derivation of the formula for averages of ratios
of characteristic polynomials in the case of symplectic group, following the
approach in [5]. This formula was previously derived by other methods by
Conrey, Farmer and Zirnbauer [8] without restriction on the dimension of the
group and also by Conrey, Forrester and Snaith [9].

A unitary matrix g is said to be symplectic if gJ tg = J where

J =

(
0 IN
−IN 0

)
.

A symplectic matrix has determinant equal to 1. The symplectic group Sp(2N)
is the group of 2N × 2N symplectic matrices. The eigenvalues of a symplectic
matrix are

e±iθ1 , · · · , e±iθN
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with
0 6 θ1 6 θ2 6 · · · 6 θN 6 π.

The Weyl integration formula [37] for integrating a symmetric function f(A) =
f(θ1, · · · , θN) over Sp(2N) with respect to Haar measure is

ESp(2N)f =

∫

Sp(2N)

f(g) dg =
2N

2

πNN !
×

∫

[0,π]N
f(θ1, · · · , θN)

∏

16j<k≤N
(cos θk − cos θj)

2

N∏

n=1

sin2 θn dθ1 · · · dθN .

Denoting the irreducible character of the symplectic group Sp(2n) labelled

by partition λ by χ
Sp2n
λ , the Weyl character formula [37] in the case of sym-

plectic group can be written

χ
Sp2n
λ (x±1

1 , · · · , x±1
n ) =

det1≤i,j≤n(xλi+n−i+1
j − x−(λi+n−i+1)

j )

det16i,j6n(xn−i+1
j − x−(n−i+1)

j )
. (6.1)

The determinant in the denominator can be evaluated as by Weyl [37]:

det
1≤i,j≤n

(xn−i+1
j − x−(n−i+1)

j ) =

∏
i<j(xi − xj)(xixj − 1)

∏
i(x

2
i − 1)

(x1 · · · xn)n
. (6.2)

The following lemma is an easy consequence of Weyl character formula
(6.1) and the Laplace expansion:

Lemma 1. For λ ⊆
〈
Nk
〉

let λ̃ = (k − λ′N , · · · , k − λ′1). Then we have

k∏

i=1

N∏

n=1

(xi + x−1
i − tn − t−1

n ) =

∑

λ⊆Nk

(−1)|λ̃|χSp(2k)
λ (x±1

1 , · · · , x±1
k )χ

Sp(2N)

λ̃
(t±1

1 , · · · , t±1
N ). (6.3)

Proof Using Weyl character formula (6.1) and the Laplace expansion we can
rewrite the right-hand side of (6.3) as follows:

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xN+k
1 − x−(N+k)

1 xN+k−1
1 − x−(N+k−1)

1 . . . x1
1 − x−1

1
...

...
. . .

...

xN+k
k − x−(N+k)

k xN+k−1
k − x−(N+k−1)

k . . . x1
k − x−1

k

tN+k
1 − t−(N+k)

1 tN+k−1
1 − t−(N+k−1)

1 . . . t11 − t−1
1

...
...

. . .
...

tN+k
N − t−(N+k)

N tN+k−1
N − t−(N+k−1)

N . . . t1N − t−1
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

× (x1 . . . xk)
k

∏
16i<j≤k(xi − xj)(xixj − 1)

∏k
i=1(x2

i − 1)

× (t1 . . . tN)N∏
16i<j≤N (ti − tj)(titj − 1)

∏N
i=1(t2i − 1)

.

(6.4)



Some applications of symmetric functions theory in random matrix
theory

159

Now the determinant in the equation (6.4) can be evaluated using the Weyl
denominator formula (6.2) to be equal to

∏

16i<j6k
(xi − xj)(xixj − 1)

k∏

i=1

(x2
i − 1)

∏

16i<j6N
(ti − tj)(titj − 1)

N∏

i=1

(t2i − 1)×

∏k
i=1

∏N
n=1(xi − tn)(xitn − 1)

(x1 . . . xk)N+k(t1 . . . tN)N+k
.

(6.5)

Finally combining (6.4) and (6.5) we get that the expression on the right-
hand side of (6.3) equals to

∏k
i=1

∏N
n=1(xi − tn)(xitn − 1)

(x1 . . . xk)N(t1 . . . tN)k
=

k∏

i=1

N∏

n=1

(xi + x−1
i − tn − t−1

n ),

completing the proof. 2

We will also make use of the following Cauchy-Littlewood identity for
Sp(2N), known to Weyl [37] and Littlewood [26]:

1∏N
n=1

∏l
j=1(1− yjtn)(1− yjt−1

n )
= (6.6)

1∏
i<j(1− yiyj)

∑

µ

χSp(2N)
µ (t±1

1 , · · · , t±1
N )sµ(y1, · · · , yl). (6.7)

We are ready to prove the following result.

Theorem 3. Let yj be complex numbers with |yj| < 1. Suppose N > l. Then
we have:

∫

Sp(2N)

∏k
j=1 det(I + xjg)

∏l
i=1 det(I − yig)

dg =

∑

ε∈{±1}k

k∏

j=1

x
N(1−εj)
j

∏k
i=1

∏l
j=1(1 + xεii yj)∏

i6j(1− xεii x
εj
j )
∏

16i<j6l(1− yiyj)
.

Proof: Lemma 1 implies that

k∏

i=1

N∏

n=1

(xi + x−1
i + tn + t−1

n ) =

∑

λ⊆Nk

χ
Sp(2k)
λ (x±1

1 , · · · , x±1
k )χ

Sp(2N)

λ̃
(t±1

1 , · · · , t±1
N ).

(6.8)

Combining (6.8) with Cauchy-Littlewood formula (6.6) we have, with t±1
i
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the eigenvalues of g ∈ Sp(2N)

∏k
j=1 det(I + xjg)

∏l
i=1 det(I − yig)

=

(x1 · · · xk)N∏
i<j(1− yiyj)

∑

λ⊆Nk

χ
Sp(2k)
λ (x±1

1 , · · · , x±1
k )χ

Sp(2N)

λ̃
(t±1

1 , · · · , t±1
N )

∑

µ

χSp(2N)
µ (t±1

1 , · · · , t±1
N )sµ(y1, · · · , yl).

Since

ESp(2N)χ
Sp(2N)
λ (g)χSp(2N)

µ (g) =

{
1 if λ = µ, l(λ) 6 N ;
0 otherwise,

the theorem follows from the following formula which is easily derived from
Weyl character formulae using Laplace expansion:

∑

λ⊆〈Nk〉
χ

Sp(2k)
λ (x±1

1 , · · · , x±1
k )sλ̃(y1, · · · , yl) =

∑

ε∈{±1}k

k∏

j=1

x
−Nεj
j

∏k
i=1

∏l
j=1(1 + xεii yj)∏

i6j(1− xεii x
εj
j )

. (6.9)

7 Combinatorial definition of Schur functions

and some of its consequences

One can give a purely combinatorial definition of Schur functions as follows.
A semi-standard Young tableau (SSYT) of shape λ is a filling of the boxes
of λ with positive integers such that the rows are weakly increasing and the
columns are strictly increasing.

6
5
2
1

7
6
3
1

6
3
2

5
2

6
3

Partition λ SSYT T

Figure 7.1:

In the figure we exhibited a partition λ = (5, 5, 3, 2) = 〈10213152〉, and
a SSYT T of shape λ (we write λ = sh(T )). We say that T has type α =
(α1, α2, . . . ), denoted α = type(T ), if T has αi = αi(T ) parts equal to i. Thus,
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the SSYT in the figure has type (2, 3, 3, 0, 2, 4, 1). For any SSYT T of type α
write

xT = x
α1(T )
1 x

α2(T )
2 . . . .

In our example we have

xT = x2
1x

3
2x

3
3x

0
4x

2
5x

4
6x

1
7.

Let λ be a partition. A purely combinatorial definition of Schur function
sλ in the variables x = (x1, x2, . . . , xN) is given by the formal power series

sλ(x) =
∑

T

xT , (7.1)

where the sum is over all SSYT’s T of shape λ.
For instance, SSYT of shape (2, 1) with largest part at most three are given

by

1 1
2

1 2
2

1 1
3

1 3
3

2 2
3

2 3
3

1 2
3

1 3
2

Consequently,

s21(x1, x2, x3) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3 + 2x1x2x3.

The number of SSYT of shape λ and type α is denoted Kλα, and is called
the Kostka number. We have

sλ =
∑

α

Kλαx
α. (7.2)

7.1 Relationship to plane partitions

We now use combinatorial definition of Schur functions to describe the relation
between moments of characteristic polynomials of random unitary matrices
and plane partitions. A plane partition, P , is a finite set of lattice points
with positive integer coefficients {(i, j, k)} ⊆ N3 with the property that if
(a, b, c) ∈ P and 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c, then (i, j, k) ∈ P . A plane
partition is symmetric if (i, j, k) ∈ P if and only if (j, i, k) ∈ P . The height of
stack (i, j) is the largest value of k for which there exist a point (i, j, k) in the
plane partition.

The study of plane partitions was initiated by MacMahon [28] who proved
that the generating function for plane partition fitting in the box

B(a, b, c) = {(i, j, k)|1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c} (7.3)

is given by
a∏

i=1

b∏

j=1

c∏

k=1

1− qi+j+k−1

1− qi+j+k−2
; (7.4)
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in particular, the total number of plane partitions fitting inside B(a, b, c) is
given by

a∏

i=1

b∏

j=1

c∏

k=1

i+ j + k − 1

i+ j + k − 2
.

We can express the generating function for plane partitions given in (7.4) in
terms of Schur functions as follows. From the combinatorial definition of Schur
functions it follows that

sba(q
a+c, qa+c+1, . . . , q)

where ba denotes a partition with a parts all of which equal to b, is the generat-
ing function for plane partitions strictly decreasing down columns with exactly
a rows each of length b and with the largest stack of height less than or equal
to a+ c. Removing a− i+ 1 from row i we bijectively obtain a plane partition
which is a subset of B(a, b, c). Consequently an alternative expression for (7.4)
is given by

q−ba(a+1)/2sba(q
a+c, qa+c+1, . . . , q). (7.5)

Now from (5.9) it follows that for a = c = m, b = N (7.5) can be expressed as

EM∈U(N)

m∏

j=1

det(IN + αjM) det(IN + βjM)

with αi = qn+i and βi = qi. In particular, we obtain the following result.

Proposition 4. The expected value of the 2m-s moment of a characteristic
polynomial of random unitary matrix M in U(N) is equal to the total number
of plane partitions fitting in B(m,m,N):

EU(N)|PM(1)|2m =
m∏

i=1

m∏

j=1

N∏

k=1

i+ j + k − 1

i+ j + k − 2
. (7.6)

We refer the reader to [18] for analogous results pertaining to other groups.

7.2 Random matrices and magic squares

We will now use the combinatorial definition of Schur functions to compute
the moments of coefficients of characteristic polynomial of unitary matrices.
We write

PM(z) = det(M − zI) =
N∏

j=1

(eiθj − z) = (−1)N
N∑

j=0

Scj(M)zN−j(−1)j, (7.7)

where Scj(M) is the j-th secular coefficient of the characteristic polynomial.
Note that

Sc1(M) = Tr(M), (7.8)
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and
ScN(M) = det(M). (7.9)

The moments of traces were discussed in section 4. Moments of the higher
secular coefficients were studied by Haake and collaborators [19, 20] who ob-
tained:

EU(N)Scj(M) = 0, EU(N)|Scj(M)|2 = 1; (7.10)

and posed the question of computing the higher moments. The answer is given
by Proposition 5, which we state below after pausing to give the following
definition.

Definition 1. If A is an m by n matrix with nonnegative integer entries and
with row and column sums

ri =
n∑

j=1

aij,

cj =
m∑

i=1

aij;

then the the row-sum vector row(A) and column-sum vector col(A) are defined
by

row(A) = (r1, . . . , rm),

col(A) = (c1, . . . , cn).

Given two partitions µ = (µ1, . . . , µm) and µ̃ = (µ̃1, . . . , µ̃n) we denote
by Nµµ̃ the number of nonnegative integer matrices A with row(A) = µ and
col(A) = µ̃.

For example, for µ = (2, 1, 1) and µ̃ = (3, 1) we have Nµµ̃ = 3; and the
matrices in question are




2 0
1 0
0 1


 ,




2 0
0 1
1 0


 ,




1 1
1 0
1 0


 .

For µ = (2, 2, 1) and µ̃ = (3, 1, 1) we have Nµµ̃ = 8; and the matrices in
question are




0 1 1
2 0 0
1 0 0


 ,




1 1 0
1 0 1
1 0 0


 ,




1 0 1
1 1 0
1 0 0


 ,




2 0 0
0 1 1
1 0 0


 ,




2 0 0
1 1 0
0 0 1


 ,




2 0 0
1 0 1
0 1 0


 ,




1 1 0
2 0 0
0 0 1


 ,




1 0 1
2 0 0
0 1 0


 .

We are ready to state the following result, proved in [13] where analo-
gous results are established for other compact groups; see also [18] for further
generalizations.
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Proposition 5. (a) Consider a = (a1, . . . , al) and b = (b1, . . . , bl) with aj, bj

nonnegative natural numbers. Then for N > max
(∑l

1 jaj,
∑l

1 jbj

)
we have

EUN
l∏

j=1

(Scj(M))aj(Scj(M))
bj

= Nµµ̃. (7.11)

Here µ and µ̃ are partitions µ = 〈1a1 . . . lal〉, µ̃ = 〈1b1 . . . lbl〉 and Nµµ̃ is the
number of nonnegative integer matrices A with row(A) = µ and col(A) = µ̃.

(b) In particular, for N > jk we have

EU(N)|Scj(M)|2k = Hk(j), (7.12)

where Hk(j) is the number of k×k nonnegative integer matrices with each row
and column summing up to j – “magic squares”.

The reader is likely to have encountered objects, which following Ehrhart [17]
are refered to as “historical magic squares”. These are square matrices of or-
der k, whose entries are nonnegative integers (1, . . . , k2) and whose rows and
columns sum up to the same number. The oldest such object,




4 9 2
3 5 7
8 1 6


 (7.13)

first appeared in ancient Chinese literature under the name Lo Shu in the
third millennium BC and repeatedly reappeared in the cabbalistic and occult
literature in the middle ages. Not knowing ancient Chinese, Latin, or Hebrew
it is difficult to understand what is “magic” about Lo Shu; it is quite easy to
understand however why it keeps reappearing: there is (modulo reflections)
only one historic magic square of order 3.

Following MacMahon [28] and Stanley [33], what is referred to as magic
squares in modern combinatorics are square matrices of order k, whose entries
are nonnegative integers and whose rows and columns sum up to the same
number j. The number of magic squares of order k with row and column sum
j, denoted by Hk(j), is of great interest; see [14] and references therein. The
first few values are easily obtained:

Hk(1) = k!, (7.14)

corresponding to all k by k permutation matrices (this is the k-th moment of
the traces; see section 4);

H1(j) = 1, (7.15)

corresponding to 1× 1 matrix [j].

We also easily obtain H2(j) = j + 1, corresponding to

[
i j − i

j − i i

]
, but

the value of H3(j) is considerably more involved:

H3(j) =

(
j + 2

4

)
+

(
j + 3

4

)
+

(
j + 4

4

)
. (7.16)
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This expression was first obtained by Mac Mahon in 1915 [28] and a simple
proof was found only a few years ago by M. Bona [2].

The study of Hk(j) was initiated by by Mac Mahon in 1915 [28]; in the early
seventies Stanley and Ehrhart [33, 34, 16] proved that Hk(j) is a polynomial
in j of degree (k − 1)2 satisfying the following relations

Hk(−1) = Hk(−2) = · · · = Hk(−k + 1) = 0, (7.17)

and

Hk(−k − j) = (−1)k−1Hk(j). (7.18)

They further showed that the leading coefficient of Hk(j) is the relative vol-
ume of Bk - the k-th Birkhoff polytope, which is the convex hull of permutation
matrices:

Bk =

{
(xij) ∈ Rk

2

∣∣∣∣ xij > 0;
k∑

i=1

xij = 1;
k∑

j=1

xij = 1

}
. (7.19)

To prove proposition 5 we first note that

Scj(M) = ej(M), (7.20)

where ej are the elementary symmetric functions defined in (3.1), and that

l∏

j=1

(Scj(M))aj(Scj(M))
bj

= eµ(M)eµ̃(M), (7.21)

where µ and µ̃ are partitions µ = 〈1a1 . . . lal〉, µ̃ = 〈1b1 . . . lbl〉 and eµ, eµ̃ are
elementary symmetric functions defined in (3.3). We express the elementary
symmetric functions in terms of Schur functions:

eµ =
∑

λ

Kλ′µsλ, (7.22)

where Kλµ is the Kostka number defined preceding (7.2).
We now integrate over the unitary group and use the fact that the Schur

function are irreducible characters expressed in (3.8), to obtain:

∫

U(N)

eµ(M)eµ̃(M)dM =
∑

λ′`|µ|=|µ̃|
Kλ′µKλ′µ̃ = Nµµ̃ (7.23)

where Nµµ̃ is the number of nonnegative integer matrices A with row(A) = µ
and col(A) = µ̃. The last equality in (7.23) is the consequence of the Knuth
correspondence [25], establishing a bijection between N -matrices A of finite
support and ordered pairs of (P,Q) of SSYT of the same shape with type(P ) =
col(A) and type(Q) = row(A). This completes proof of Proposition 5.
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7.3 Pseudomoments of the Riemann zeta-function and
pseudomagic squares

From Proposition 5 it follows that if we consider truncated characteristic poly-
nomial

PM,l(z) =
l∑

j=0

Scj(M)zN−j(−1)j, (7.24)

we have for N ≥ lk
EU(N)|PM,l(1)|2k = Gk(l), (7.25)

where Gk(l) denotes the number of k × k nonnegative integer matrices with
row and column sums less than or equal to l (referred to as “pseudomagic
squares” by Ehrhart [17]):

Gk(l) = card

{
(xij) ∈ Zk

2

∣∣∣∣ xij > 0;
k∑

i=1

xij 6 l;
k∑

j=1

xij 6 l

}
. (7.26)

Ehrhart [17] proved that Gk(l) is a polynomial in l of degree k2 with lead-
ing coefficient given by γk = vol(Pk), where Pk is the convex polytope of
substochastic matrices in Rk2

defined by the following inequalities:

Pk =

{
(xij) ∈ Rk

2

∣∣∣∣ xij > 0;
k∑

i=1

xij 6 1;
k∑

j=1

xij 6 1

}
. (7.27)

For example,

G2(l) =
1

6
(l + 1)(l + 2)(l2 + 3l + 3),

and

vol(P2) =
1

6
.

A basic conjecture of Keating and Snaith [23] (considerably refined and
extended in [6]) asserts that for moments of the Riemann zeta function

ζ(s) =
∞∑

n=1

1

ns

we have

lim
T→∞

1

T

∫ T

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2k

dt ∼ akgk logk
2
T, (7.28)

where ak is an arithmetic factor given by

ak =
∏

p

(
1− 1

p

)k2 ∞∑

j=0

dk(p
j)2

pj
, (7.29)
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and gk is a “geometric” factor given by

gk = lim
N→∞

EU(N)|PM(1)|2k
Nk2 =

k−1∏

j=0

j!

(j + n)!
. (7.30)

In [10] the following result is proved for moments of the “truncated” Rie-
mann zeta function (that is, for moments of its partial sums):

lim
T→∞

1

T

∫ T

0

∣∣∣∣∣
X∑

n=1

1

n
1
2 +it

∣∣∣∣∣

2k

dt ∼ akγk(logX)k
2
, (7.31)

where ak is an arithmetic factor, given by (7.29), and γk is the geometric factor,
γk = vol(Pk).

Note that using (7.25) we can rewrite the geometric factor γk in a manner
similar to the expression for gk in (7.30) as follows:

γk = lim
l→∞

EU(lk)|PM,l(1)|2k
lk2 . (7.32)
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The distribution of ranks in families of
quadratic twists of elliptic curves

A. Silverberg

This paper gives a very brief survey, in the form of a table, of some results
and conjectures about densities of ranks of elliptic curves over Q in families of
quadratic twists. The table summarizes some of the knowledge to date on the
density of quadratic twists of rank r or ≥ r, for some small values of r. We
also give a commentary on the table. For a more extensive survey of ranks of
elliptic curves over Q, see [RS02]. The author thanks Roger Heath-Brown for
helpful comments.

We first fix notation. If E is an elliptic curve of the form y2 = f(x), let
E(d) denote dy2 = f(x), the quadratic twist of E by d. If E is an elliptic curve
over Q, it suffices to consider d that are squarefree integers. Let

N∗(X) = #{squarefree d ∈ Z : |d| ≤ X, rank(E(d)(Q)) is ∗},

where ∗ can be “2”, “odd”, “≥ 3”, etc. The table below gives a summary of
some of the known results (and conjectures) to date on the rate of growth of
Nr(X) and N≥r(X).

It is well-known (see Theorem 333 of [HW79]) that

N≥0(X) = #{squarefree d ∈ Z : |d| ≤ X}

∼ 2X
∏

p

(1− 1

p2
) =

2

ζ(2)
X =

12

π2
X.

The first part of the Birch and Swinnerton-Dyer Conjecture [BSD63/5] says
that the rank of an elliptic curve E over Q should be equal to the analytic
rank (i.e., the order of vanishing at s = 1 of the L-function of E over Q).
In particular, the Birch and Swinnerton-Dyer Conjecture implies the Parity
Conjecture, which says that the rank has the same parity as the analytic rank.
The parity of the analytic rank can be read off from the sign in the functional
equation for the L-function. Using the way that the sign varies as one twists
the curve, one can show that the Parity Conjecture implies that, as |d| grows,
the ranks of the quadratic twists by squarefree d ∈ Z of a fixed elliptic curve
over Q are even half the time and odd half the time. (See the Nodd, Neven table
entry.)

In 1979, Goldfeld [G79] conjectured that for every fixed elliptic curve, the
average rank of its quadratic twists is 1

2
.

1Supported by NSA grant MDA904-03-1-0033.
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Goldfeld Conjecture. If E is an elliptic curve over Q, then

lim
X→∞

∑
squarefree d∈Z,|d|≤X rank(E(d)(Q))

#{squarefree d ∈ Z : |d| ≤ X} =
1

2
.

If one assumes both the Parity Conjecture and Goldfeld’s Conjecture, then
for every fixed elliptic curve, the ranks of the quadratic twists should be zero
half the time and one half the time. (See the last N0 and N1 table entries.)

In the table, “w/PC” means that the result is conditional on the Parity
Conjecture, and “w/PC & GC” means that the result is conditional on both
the Parity Conjecture and Goldfeld’s Conjecture. Further, “w/RMTC” means
this is a conjecture made in [CKRS02] (see Conjecture 1 and (7) of [CKRS02]),
which is based on Random Matrix Theory. Unless otherwise stated, the table
entries hold for all elliptic curves over Q.

All “�” and “�” entries in the table, and in the discussion below, should
be read as “there is a positive constant, depending on E but not on X, such
that for all sufficiently large X, we have . . . ”.

N≥0(X) ∼ 12
π2X

Nodd(X)

Neven(X)
∼ 6

π2X w/PC

N0(X)

� X/ logX

� X

∼ 6
π2X

[OS98]

for some E [HB94, J98, V98, W99, Y03]

w/PC & GC

N1(X)

� X1−ε

� X

∼ 6
π2X

[PP97]

for some E [V98]

w/PC & GC

N≥1(X)
≥ 6

π2X

∼ 6
π2X

w/PC

w/PC & GC

N≥2(X)

� X
1
7/ logX

� X
1
3

� X
1
2

� X
3
4−ε,� X

3
4 +ε

j(E) 6= 0, 1728 [ST95]

for some E [ST95, RS01]

w/PC [ST95, GM91]

w/RMTC [CKRS02]

N≥3(X) � X
1
6

� X
1
3

for some E [ST95, RS01]

for some E w/PC [ST95, RS01]

N≥4(X)
→∞
� X

1
6

for some E [Me98, RS04]

for some E w/PC [RS01, RS04]

N≥5(X) →∞ for some E w/PC [Me98, RS04]
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Ono and Skinner [OS98], using results of Waldspurger and of Friedberg and
Hoffstein, show that N0(X) � X/ logX for all elliptic curves. It was known
earlier that N0(X) � X/ logX for certain elliptic curves (see for example
[R74] for y2 = x3 − x).

Work of Monsky [Mo90], Birch [B69, B70], and Heegner [H52] shows that
certain elliptic curves E have rank(E(p)(Q)) ≥ 1 for all primes p in certain
congruence classes (for example, for y2 = x3 − x and all primes p ≡ 5 or 7
(mod 8)), and thus N≥1(X)� X/ logX (in fact, N1(X)� X/ logX).

For the elliptic curve y2 = x3−x, Heath-Brown (see Theorem 2 of [HB94])
shows that N0(X) > (.279)6X/π2, and, subject to the Parity Conjecture,
N1(X) > (.559)6X/π2. Results along these lines for other elliptic curves can be
found in [J98, V98, W99, V99, O01, Y03]. Vatsal [V98] shows that N1(X)� X
and N0(X) � X for the curve y2 + y = x3 + x2 + x, unconditionally. Ono
[O01] shows that if E has no rational point of order 2, then there is some α(E)
with 0 < α(E) < 1 such that N0(X)� X/(logX)1−α(E).

The methods for finding lower bounds for N≥r(X) when r ≥ 2 involve find-
ing twists E(g(T )) of E over Q(T ) of rank ≥ r, and specializing T . By Theorem
C of [Si83], for all but finitely many t ∈ Q one has rank(E (g(t))) ≥ r. Using
sieve theory, one can find a lower bound on the number of squarefree integers
d such that |d| ≤ X and d = g(t)z2 for some t, z ∈ Q (so rank(E(d)(Q)) =
rank(E(g(t))(Q))); see [GM91, ST95]. Mestre [Me92, Me98, Me00] has tech-
niques for finding elliptic curves of “large” rank over Q(T ) (and over Q).
See also work of Howe, Leprévost, and Poonen [HLP00]. Gouvêa and Mazur
[GM91] showed that, assuming the Parity Conjecture, N≥2,even(X)� X1/2−ε.
Stewart and Top [ST95], without assuming the Parity Conjecture, showed that
if j(E) 6= 0 or 1728, then N≥2(X)� X1/7/(logX)2. For elliptic curves of the
form

y2 = ax3 + bx2 + bx+ a

with a, b ∈ Q and a(3a− b)(a+ b) 6= 0, they showed N≥2(X)� X1/3. For

y2 = x(x− 1)(x− (
b2 + 1

2b
)2)

with b ∈ Q − {0, 1,−1}, they showed N≥3(X) � X1/6 (based on an idea of
Schoen [Sc90] who they say also obtained it independently).

Building on the work of Mestre, Gouvêa-Mazur, and Stewart-Top, Rubin
and Silverberg [RS01, RS04] show that N≥2(X)� X

1
3 holds, for example, for

every elliptic curve y2 = x3 +ax+b such that the cubic has a non-zero rational
root. Further, N≥3(X) � X

1
3 holds (subject to the Parity Conjecture), for

example, for every elliptic curve E of the form y2 = x3 + ax+ b such that the
cubic has three real roots (equivalently, the discriminant ∆(E) > 0) and either

(a) the largest or the smallest root is rational, or

(b) E has a rational subgroup of order 3.
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In particular, it holds for all elliptic curves over Q for which all the 2-torsion
is rational.

Conjecture 1 of [CKRS02] predicts that N≥2(X) ∼ CX3/4 logm(X) for some
C and m. This prediction is based on random matrix theory. The workshop
announcement [CFMS04] states that random matrix theory also predicts that

N3(X) ∼ CX1/4 logm(X), which is inconsistent with the N≥3(X)� X
1
3 results

stated above1.

In [Me98], Mestre stated that if E is an elliptic curve over Q with tor-
sion subgroup isomorphic to Z/8Z × Z/2Z, then E has infinitely many (non-
isomorphic) quadratic twists with rank at least 4 over Q. Theorems 3.2, 3.6,
and 5.1 and Corollary 5.2 of [RS04] give other “N≥r(X) → ∞” results for
r = 4 and, assuming the Parity Conjecture, for r = 5.

All the N≥r(X) entries in the table apply for example to the elliptic curves

y2 = x(x+ n)(x− n− 1) (1.1)

with n = 1, 8, 16, 21, 56, 65, 85, 96, 161, 176, 208, 261, 341, 408, 456, 533,
and 560 (see Corollary 5.2 of [RS04]). All except the N≥5(X) entry are known
to hold for the elliptic curves

y2 = x(x− 1)(x+
a2 − 1

a2 + 2
) (1.2)

with a ∈ Q−{0,±1} (see Theorem 5.5 of [RS01] and Theorem 3.2 of [RS04]),
and all of those entries except the N≥4(X)→∞ entry are known to hold even

when a = 0. We remark that (1.2) is the quadratic twist by a2+2
3

of (1.1)

with n = a2−1
3

, and (1.2) for a = 0 is the quadratic twist by 2 of the curve
y2 = x3 − x.
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d’invariant donné, C. R. Acad. Sci. Paris 327 (1998), 763–764.

[Me00] J-F. Mestre, Ranks of twists of elliptic curves, lecture at MSRI,
September 11, 2000.

[Mo90] P. Monsky, Mock Heegner points and congruent numbers, Math. Z.
204 (1990), 45–67.

[O01] K. Ono, Nonvanishing of quadratic twists of modular L-functions and
applications to elliptic curves, J. Reine Angew. Math. 533 (2001), 81–
97.



176 A. Silverberg

[OS98] K. Ono, C. Skinner, Non-vanishing of quadratic twists of modular L-
functions, Invent. Math. 134 (1998), 651–660.

[PP97] A. Perelli, J. Pomyka la, Averages of twisted elliptic L-functions, Acta
Arith. 80 (1997), 149–163.

[R74] M. J. Razar, The non-vanishing of L(1) for certain elliptic curves with
no first descents, Amer. J. Math. 96 (1974), 104–126.

[RS01] K. Rubin, A. Silverberg, Rank frequencies for quadratic twists of el-
liptic curves, Exper. Math. 10 (2001), 559–569.

[RS02] K. Rubin, A. Silverberg, Ranks of elliptic curves, Bull. Amer. Math.
Soc. 39 (2002), 455–474.

[RS04] K. Rubin, A. Silverberg, Twists of elliptic curves of rank at least four,
in this volume.

[Sc90] C. Schoen, Bounds for rational points on twists of constant hyperellip-
tic curves, J. Reine Angew. Math. 411 (1990), 196–204.

[Si83] J. H. Silverman, Heights and the specialization map for families of
abelian varieties, J. Reine Angew. Math. 342 (1983), 197–211.

[ST95] C. L. Stewart, J. Top, On ranks of twists of elliptic curves and power-
free values of binary forms, J. Amer. Math. Soc. 8 (1995), 943–973.

[V98] V. Vatsal, Rank-one twists of a certain elliptic curve, Math. Ann. 311
(1998), 791–794.

[V99] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J.
98 (1999), 397–419.

[W99] S. Wong, Elliptic curves and class number divisibility, Internat. Math.
Res. Notices 1999 (1999), no. 12, 661–672.

[Y03] G. Yu, Rank 0 quadratic twists of a family of elliptic curves, Compo-

sitio Math. 135 (2003), 331–356.

Department of Mathematics,
University of California at Irvine,
Irvine, CA 92697
USA



Twists of elliptic curves of rank at
least four

K. Rubin and A. Silverberg

Abstract

We give infinite families of elliptic curves over Q such that each curve
has infinitely many non-isomorphic quadratic twists of rank at least 4.
Assuming the Parity Conjecture, we also give elliptic curves over Q with
infinitely many non-isomorphic quadratic twists of odd rank at least 5.

1 Introduction

Mestre [Me92] showed that every elliptic curve over Q has infinitely many
(non-isomorphic) quadratic twists of rank at least 2 over Q, and he gave
[Me98, Me00] several infinite families of elliptic curves over Q with infinitely
many (non-isomorphic) quadratic twists of rank at least 3. Further, he stated
([Me98]) that if E is an elliptic curve over Q with torsion subgroup isomorphic
to Z/8Z × Z/2Z, then there are infinitely many (non-isomorphic) quadratic
twists of E with rank at least 4 over Q.

In this paper (Theorems 3.2 and 3.6) we give additional infinite families of
elliptic curves over Q with infinitely many (non-isomorphic) quadratic twists of
rank at least 4. The family of elliptic curves in Theorem 3.2 is parametrized by
the projective line. The family of elliptic curves in Theorem 3.6 is parametrized
by an elliptic curve of rank one. In both cases, the twists are parametrized by
an elliptic curve of rank at least one.

In addition, we find elliptic curves over Q that, assuming the Parity Con-
jecture, have infinitely many (non-isomorphic) quadratic twists of odd rank
at least 5 (see Theorem 5.1 and Corollary 5.2). The proof relies on work of
Rohrlich [R93].

In Theorem 5.6 of [RS01] we gave an infinite family of elliptic curves over
Q for which the number of twists of even rank at least 4 grows at least like
X1/6, if the Parity Conjecture holds. In Theorem 3.5 below we give a different
infinite family for which this holds.

The results are obtained by extending the method of [RS01] (we learned
at [Me00] that this was one of the methods used independently and earlier by
Mestre to obtain the results announced in [Me98]).

1Supported by NSF grant DMS-0140378.
2Supported by NSA grant MDA904-03-1-0033.
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Definition 1.1. If E : y2 = f(x) is an elliptic curve, let E(d) denote dy2 =
f(x), the quadratic twist of E by d.

2 The general method

We first give a more explicit version of Lemma 2.1 of [RS01].

Lemma 2.1. Suppose that E is an elliptic curve over a field F , that K1, . . . , Kn

are distinct separable extensions of F of degree at most 2, and that for i =
1, . . . , n, there are points Pi ∈ E(Ki) of infinite order. Suppose also that if
Ki 6= F , then σ(Pi) = −Pi, where σ is the non-trivial element of Gal(Ki/F ).
Let K denote the compositum K1 · · ·Kn. Then {P1, . . . , Pn} is an independent
set in E(K).

Proof Let G = Gal(K/F ). Let χi : Gal(Ki/F ) → {±1} denote the non-
trivial character if Ki 6= F , and the trivial character if Ki = F . Let ei =∑

σ∈G χi(σ)σ. Then for all i and j,

ei(Pj) =
∑

σ∈G
χi(σ)(σ(Pj)) =

∑

σ∈G
χi(σ)(χj(σ)Pj)

=

(∑

σ∈G
χi(σ)χj(σ)

)
Pj =

{
O if i 6= j

|G|Pj if i = j.

Suppose
∑

j njPj = O. Then O = ei(
∑

j njPj) = |G|niPi for every i. Since Pi
has infinite order, ni = 0 for every i. 2

Definition 2.2. (i) If k(t) ∈ Z[t], we say that k(t) is squarefree if k(t) is
not divisible by the square of any non-constant polynomial in Z[t].

(ii) Suppose g(t) ∈ Q(t). A squarefree part of g(t) is a squarefree k(t) ∈ Z[t]
such that g(t) = k(t)j(t)2 for some j(t) ∈ Q(t).

The following result is a variant of Corollary 2.2 of [RS01].

Proposition 2.3. Suppose f(x) ∈ Q[x] is a separable cubic, and E is the el-
liptic curve y2 = f(x). Let h1(t) = t, suppose we have non-constant h2(t), . . . ,
hr(t) ∈ Q(t), let ki(t) be a squarefree part of f(hi(t))/f(t), and suppose that
k1(t), . . . , kr(t) are distinct modulo (Q∗)2. Then:

(i) the rank of E(f(t))
(
Q
(
t,
√
k2(t), . . . ,

√
kr(t)

))
is at least r;

(ii) if C is the curve defined by the equations s2
i = ki(t) for i = 1, . . . , r, then

for all but at most finitely many rational points (τ, σ1, . . . , σr) ∈ C(Q),
the rank of E(f(τ))(Q) is at least r.
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Proof Apply Lemma 2.1 to the elliptic curve E(f(t)) over the field F = Q(t),
with Ki = F

(√
ki(t)

)
(so K1 = F ). Since the polynomials ki are squarefree

and distinct modulo (Q∗)2, the fields Ki are distinct. For i = 1, . . . , r, let

Pi =
(
hi(t),

√
f(hi(t))/f(t)

)
∈ E(f(t))

(
Q
(
t,
√
ki(t)

))
.

Note that Pi has infinite order, since its x-coordinate is not constant. Now (i)
follows. Part (ii) now follows from Theorem C of [S83]. 2

Retain the setting of Proposition 2.3. Suppose from now on that each hi
is a linear fractional transformation that permutes the roots of f . Then by
Proposition 2.9 of [RS01], ki(t) is linear. More precisely, k1(t) = 1, and if
hi(t) = αt+β

t+δ
with α, β, δ ∈ Q, then ki(t) = f(α)(t + δ) and f(hi(t))/f(t) =

ki(t)(t+ δ)−4.
In [RS01] we considered the case where r ≤ 3. Suppose r = 3. Then

Q(C) = Q
(
t,
√
k2(t),

√
k3(t)

)
,

and the genus of C is zero, where C was defined in Proposition 2.3(ii). Our
goal was to choose h2 and h3 so that the corresponding curve C has a rational
point (and therefore has infinitely many rational points). We considered pairs
of the five non-trivial linear fractional transformations that permute the roots
of f , until we found h2 and h3 for which we could find a rational point on the
corresponding curve C. We used this to parametrize the rational points on C,
i.e., we found an explicit u ∈ Q

(
t,
√
k2(t),

√
k3(t)

)
so that

Q(C) = Q
(
t,
√
k2(t),

√
k3(t)

)
= Q(u).

We then computed t as a function of u, i.e., t = t(u) ∈ Q(u). The map
u 7→

(
t(u),

√
k2(t(u)),

√
k3(t(u))

)
defines an isomorphism from P1(Q) onto

C(Q). By Proposition 2.3(ii), for all but finitely many u ∈ Q, the rank of
E(f(t(u)))(Q) is at least 3.

In this paper, we consider the case r = 4. Then the genus of C is one.
We will start with a pair h2, h3 as above, and, among the remaining three
candidates for h4, look for one for which we can see enough rational points
on the corresponding curve C to ensure that C is an elliptic curve of positive
rank. We have

Q(C) = Q
(
t,
√
k2(t),

√
k3(t),

√
k4(t)

)
= Q(u, v)

with v2 = k4(t(u)). A rational point on the elliptic curve C corresponds to a
pair u0, v0 ∈ Q such that v2

0 = k4(t(u0)). By Proposition 2.3(ii), for all but
finitely many such (u0, v0), the rank of E(f(t(u0)))(Q) is at least 4.

3 Rank ≥ 4

From now on we consider elliptic curves of the form

y2 = x(x− 1)(x− λ)
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where λ ∈ Q− {0, 1}.

Definition 3.1. We fix a numbering of the linear fractional transformations
hi(t) in Q(t) that permute the set {0, 1, λ}, along with corresponding squarefree
parts ki(t):

h1(t) = t, k1(t) = 1,

h2(t) =
t− λ

(2− λ)t− 1
, k2(t) = (1− λ)((λ− 2)t+ 1),

h3(t) =
λ2(t− 1)

(λ2 − λ+ 1)t− λ, k3(t) = λ(1− λ)((λ2 − λ+ 1)t− λ),

h4(t) =
λt

(λ+ 1)t− λ, k4(t) = λ((λ+ 1)t− λ),

h5(t) =
λ2(t− 1)

t(2λ− 1)− λ2
, k5(t) = λ(λ− 1)((1− 2λ)t+ λ2),

h6(t) =
λ(2− λ)

(λ2 − λ+ 1)t− λ2
, k6(t) = λ((λ− 1)((λ2 − λ+ 1)t− λ2).

Theorem 3.2. Suppose a ∈ Q− {0, 1,−1}. Let η = a2, let

fη(x) = x(x− 1)

(
x− 1− η

η + 2

)
,

and let Eη be y2 = fη(x). Let Cη be the curve

v2 = (η + 1)2u4 + 4η(2η2 + 3η + 1)u3+

2(7η4 + 7η3 + 2η2 + η + 1)u2 + 4(2η5 + η4 − 2η2 − η)u+ (η3 − 1)2,

and let

tη(u) =
2(1− η)Tη(u)

3((η + 1)u2 + 1− η3)2

where

Tη(u) = (η + 1)2u4 + 2η(2η2 + 3η + 1)u3+

2(3η4 + 3η3 + η2 + η + 1)u2 + 2η(η3 − 1)(2η + 1)u+ η6 − 2η3 + 1.

Then:

(i) Eη and Cη are elliptic curves over Q;

(ii) rank(Cη(Q)) ≥ 1;

(iii) for all but possibly finitely many (u, v) ∈ Cη(Q), the quadratic twist of
Eη by fη ◦ tη(u) has rank at least 4 over Q;
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(iv) there are infinitely many non-isomorphic quadratic twists of Eη of rank
at least 4 over Q.

Proof We proved Theorem 4.2(a) of [RS01] by noticing that when τ = 2λ
λ+1

,
then

k3(τ)/k2(τ) = λ2 and k2(τ) =
(λ− 1)2(−2λ+ 1)

λ+ 1
.

We wanted k2(τ) and k3(τ) to be squares. Note that −2λ+1
λ+1

= a2 if and only

if λ = 1−a2

2+a2 , and when these hold then k2( 2λ
λ+1

) and k3( 2λ
λ+1

) are both squares,

and ( 2λ
λ+1

, (λ− 1)a, λ(λ− 1)a) ∈ Ca2 = Cη. Further, we found that

Q
(
t,
√
k2(t),

√
k3(t)

)
= Q(u)

with t = tη(u) as in the statement of this theorem.
The curve Cη in the statement of this theorem is v2 = k4(tη(u)). We

observed that (0, η3 − 1) ∈ Cη(Q). We have

Q(Cη) = Q
(
u,
√
k4(tη(u))

)
= Q

(
t,
√
k2(t),

√
k3(t),

√
k4(t)

)
.

By Proposition 2.3(i) (or Corollary 2.2 of [RS01] with gi(t) = ki(t)fη(t)), the

rank of E
(fη◦tη(u))
η (Q(Cη)) is at least 4. By Proposition 2.3(ii), the rank of

E
(fη◦tη(u))
η (Q) is at least 4 for all but finitely many (u, v) ∈ Cη(Q). More

explicitly, for i = 1, . . . , 4, write

fη ◦ hi(t) = fη(t) · ki(t) · ji(t)2

with ji(t) ∈ Q(t). Then the points

(
hi ◦ tη(u), ji ◦ tη(u)

√
ki ◦ tη(u)

)
∈ E(fη(tη(u)))

η (Q(u, v))

are

(tη(u), 1),(
h1 ◦ tη(u),

( −(η + 1)u2 + η3 − 1

a((η + 1)u2 + 2(η2 − 1)u+ η3 − 1)

)3
)
,

(
h2 ◦ tη(u),

( −(η + 1)u2 + η3 − 1

a((η + 1)u2 + 2(η2 + η + 1)u+ η3 − 1)

)3
)
,

(
h3 ◦ tη(u),

(−(η + 1)u2 + η3 − 1

v

)3
)
.

They give four independent points in E
(fη◦tη(u))
η (Q(Cη)), by Lemma 2.1 above.

(The fact that the first three are independent in E
(fη◦tη(u))
η (Q(u)) was essen-

tially shown in the proof of Theorem 4.2 of [RS01].)
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We next write down a (generalized) Weierstrass model for Cη. Let Bη be
the elliptic curve y2 = (x− α)(x− β)(x− γ) where

α = −2(η2 − 1)(η2 + η + 1),

β = −2(η2 − 1)(3η2 + η − 1),

γ = −2(η2 + η + 1)(3η2 + 2η + 1).

There is a birational isomorphism from Cη to Bη that takes (0, η3−1) ∈ Cη(Q)
to the identity element and takes the point

Pa := (−(a+ 1)(η + a+ 1),−(a+ 1)(η + a+ 1)(η + 2)(aη − 2η − 1))

in Cη(Q) (with a2 = η) to

Qa := (2(η3 − 1), 8aη(η + 2)(η3 − 1)) ∈ Bη(Q).

We used PARI/GP and Mathematica to check that for 1 ≤ n ≤ 10 and
n = 12, the denominator of the x-coordinate of nQa has no nonzero rational
roots. Thus by Mazur’s Theorem [Ma77], Qa has infinite order for every a ∈
Q− {0, 1,−1}, giving (ii). (In fact, Z× Z/4Z× Z/2Z ⊆ Bη(Q), since

(2(η2 − 1)(η2 + η + 1), 8η(2η + 1)(η2 − 1)(η2 + η + 1))

is a point of order four in Bη(Q).)
Suppose η ∈ Q − {0, 1} is the square of a rational number. We checked

that the degree 12 polynomial fη ◦ tη(u) is then always separable, so for each
squarefree d ∈ Z, the hyperelliptic curve fη ◦ tη(u) = dz2 has genus 5, and thus
has only finitely many rational solutions (u, z). In other words, for each such
η and d, the set of u ∈ Q such that fη ◦ tη(u) and d differ by a rational square
is finite. Thus, since Cη(Q) is infinite, for each w there are infinitely many
non-isomorphic quadratic twists of Eη of rank at least 4 over Q, proving (iv).

2

Corollary 3.3. There are infinitely many j ∈ Q such that every elliptic curve
E over Q with j(E) = j has infinitely many quadratic twists of rank at least 4
over Q.

Proof Apply Theorem 3.2(iv) with j = j
(
E

(fη◦tη(u))
η

)
. 2

Corollary 3.3 also follows from results stated in [Me98].

Remark 3.4. Among the Eη in Theorem 3.2 are infinitely many elliptic curves
that are not twists of curves isogenous to elliptic curves with torsion subgroup
Z/8Z × Z/2Z, and thus give many new examples not given in [Me98]. For
example, if Eη has good reduction at p = 3 or 5 or 7 (for example, if a ∈ Z and

a is divisible by 3 or 5 or 7), then Eη has no quadratic twist E
(d)
η isogenous

over Q to an elliptic curve A with torsion subgroup Z/8Z × Z/2Z, as can
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be seen as follows. If A has good reduction at p, then the Weil bound gives
#A(Fp) ≤ 1 + p+ 2

√
p < 16, a contradiction (since the 2-torsion injects under

reduction modulo primes of good reduction). Therefore A and E
(d)
η have bad

reduction at p, so p ramifies in K = Q(
√
d). If P is the prime of K above p,

then A has bad reduction at P , since otherwise

16 ≤ #A(OK/P) ≤ 1 +N(P) + 2
√
N(P) = 1 + p+ 2

√
p < 16.

Thus E
(d)
η has bad reduction at P , contradicting the fact that E

(d)
η is isomorphic

over K to Eη which has good reduction at P .

We next show that if we assume the Parity Conjecture, we can obtain
a stronger conclusion than that of Theorem 3.2 for a larger class of elliptic
curves.

If E is an elliptic curve over Q, let

N∗(X) = #{squarefree d ∈ Z : |d| ≤ X, rank(E(d)(Q)) is ∗}.

In [RS01] we showed that for y2 = x(x−1)(x− 1−a2

a2+2
) with a ∈ Q−{0, 1,−1},

we have N3(X) � X1/6 (for X � 1). We also showed, subject to the Parity
Conjecture, that for every elliptic curve with all its two-torsion rational and a
rational cyclic subgroup of order four, N≥4,even(X)� X1/6 (for X � 1).

Theorem 3.5. Let E be y2 = x(x− 1)(x− 1−a2

a2+2
) where a ∈ Q−{0, 1,−1} (as

in Theorem 3.2). Suppose that the Parity Conjecture holds for all quadratic
twists of E. If |a| > 1, then N≥4,even(X)� X1/6 for X � 1.

Proof Suppose tη is the function defined in Theorem 3.2 above (with η = a2).
In Theorem 4.2(a) of [RS01] we showed that there is a degree 12 polynomial
g(u) ∈ Q[u] that differs from f◦tη(u) by a square, is a product of 3 quartics, and
satisfies rank(E(g(u))(Q(u)) ≥ 3. One can show that for every a ∈ Q−{0, 1,−1}
with |a| > 1, g(u) has at least one real root. The result now follows from
Corollary 5.2 of [RS01]. 2

Theorem 3.6. Let A be the elliptic curve y2 = 4x4 − 2x2 − 1. For every
a ∈ Q∗, let

fa(x) = x(x− 1)(x+ 2a2),

and let Ea be the elliptic curve y2 = fa(x). Let Ca be the genus one curve
v2 = (4a2 + 1)2(4a4 − 2a2 − 1)u4 + 4a(4a2 + 1)(4a4 + 2a2 + 1)u3 − 2(16a8 +
4a6 + 10a4 + 3a2− 1)u2 + a(a2 + 1)(4a4 + 2a2 + 1)u+ (a2 + 1)2(4a4− 2a2− 1),
and let

ta(u) =
Ta(u)

2((4a2 + 1)u2 + a2 + 1)2

where Ta(u) = −(2a2− 1)(4a2 + 1)2u4− 4a(4a2 + 1)(2a2 + 1)u3 + 2(4a4 + 3a2 +
1)(2a2 − 1)u2 + 4a(a2 + 1)(2a2 + 1)u− (a2 + 1)2(2a2 − 1). Then:
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(i) A(Q) ∼= Z⊕ Z/2Z;

(ii) if (a, b) ∈ A(Q), then Ca is an elliptic curve over Q and

rank(Ca(Q)) ≥ 1;

(iii) for all but possibly finitely many (u, v) ∈ Ca(Q), the quadratic twist of
Ea by fa ◦ ta(u) has rank at least 4 over Q;

(iv) if (a, b) ∈ A(Q), then there are infinitely many non-isomorphic quadratic
twists of Ea of rank at least 4 over Q.

Proof Part (i) is easy. The rest of the proof proceeds in the same way as
that of Theorem 3.2, where now we use the functions h1, h2, h5, and h3 given
at the beginning of this section. Since the curve Ca is v2 = k3(ta(u)), we have
(see also Theorem 4.1 of [RS01])

Q(Ca) = Q
(
u,
√
k3(ta(u))

)
= Q

(
t,
√
k2(t),

√
k5(t),

√
k3(t)

)
.

Let Ba be y2 = (x− α)(x− β)(x− γ) where

α = 2(4a4 − 2a2 − 1)(4a2 + 1)(a2 + 1),

β = 2(4a6 + 2a4 + 5a2 + 1)(4a2 + 1),

γ = −2(16a6 + 4a4 − 2a2 + 1)(a2 + 1).

It is easy to check that Ba is an elliptic curve whenever a ∈ Q∗. Suppose that
(a, b) ∈ A(Q). Then there is a birational isomorphism from Ca to Ba that
takes the rational point (0, (a2 + 1)b) to the identity element and takes the
point (a, (4a4 + 2a2 + 1)b) ∈ Ca(Q) to the point

Q(a,b) :=

(
g(a)(4a6 − 2a4 − a2 − 2)

a2
,
−4g(a)(4a4 + 2a2 + 1)b

a3

)
∈ Ba(Q),

where g(a) = 2(a2 + 1)(4a2 + 1). For a /∈ {0, 1,−1}, we used PARI/GP and
Mathematica to check that nQ(a,b) 6= O for 1 ≤ n ≤ 10 and n = 12. Thus
by Mazur’s Theorem [Ma77], rank(Ba(Q)) ≥ 1. Further, the rank of B1(Q)
(= B−1(Q)) is one. We now have (ii). The points

(ta(u), 1),(
h2 ◦ ta(u),

(
2a((4a2 + 1)u2 + a2 + 1)

−(4a2 + 1)u2 + 2a(4a2 + 1)u+ a2 + 1

)3
)
,

(
h5 ◦ ta(u),

(
(4a2 + 1)u2 + a2 + 1

a(4a2 + 1)u2 + 2(a2 + 1)u− a(a2 + 1)

)3
)
,

(
h3 ◦ ta(u),

(
2a((4a2 + 1)u2 + a2 + 1)

v

)3
)

give four independent points in E
(fa◦ta(u))
a (Q(Ca)). 2
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4 Root numbers

Definition 4.1. If E is an elliptic curve over Q, let NE denote the conductor
of E, let wE denote the global root number, i.e., the sign in the functional
equation for L(E, s), and let wE,p denote the local root number at a prime
p ≤ ∞. Write wE(d) for wE(d) and write wE,p(d) for wE(d),p.

Definition 4.2. If α ∈ Q∗ and n ∈ Z+, then:

(i) α ≡ 1 mod×n means that α− 1 ∈ nZ` for all primes ` | n;

(ii) α ≡ 1 mod×n∞ means that α ≡ 1 mod×n and α > 0.

Lemma 4.3. Suppose E is an elliptic curve over Q, d, d′ ∈ Q∗, and there
exists β ∈ Q∗ such that β2d/d′ ≡ 1 mod×8NE∞. Then wE(d) = wE(d′).

Proof Taking the squarefree parts of d and d′, we can reduce to the case
where d and d′ are squarefree integers.

If p <∞ and p - dNE, then E(d) has good reduction over Qp, so wE,p(d) = 1
(see Proposition 2(iv) of [R93]). Similarly for d′. Thus,

wE(d) =
∏

p≤∞
wE,p(d) =

∏

p|dNE∞
wE,p(d). (4.1)

If d/d′ is a square in Q∗p, then E(d) and E(d′) are isomorphic over Qp, so
wE,p(d) = wE,p(d

′) for all p ≤ ∞. In particular, since d/d′ > 0, it follows
that wE,∞(d) = wE,∞(d′). If p | 2NE, then d/d′ is a square in Q∗p (since

β2d/d′ ≡ 1 mod×8NE), so wE,p(d) = wE,p(d
′). If p | 2NE, then p divides d if

and only if p divides d′ (since 2ordp(β) + ordp(d) = ordp(d
′), and d and d′ are

squarefree). Thus,
∏

p|dNE∞wE,p(d)
∏

p|dNE∞wE,p(d
′)

=

∏
p|d,p-2NE wE,p(d)

∏
p|d′,p-2NE wE,p(d

′)
. (4.2)

Suppose p - NE, so E has good reduction at p. Since E and E(d) are
isomorphic over Qp(

√
d), E(d) has good reduction over Qp(

√
d). If p | d, then

Qp(
√
d) is the smallest extension of Qp over which E(d) has good reduction

(and similarly for d′). By (iii) and (v) of Proposition 2 of [R93] with e = 2, we
have

wE,p(d) =
(−1

p

)
(4.3)

if p | d and p - 2NE, where
(−1
m

)
is the Jacobi symbol.

By (4.1), (4.2), and (4.3), we have

wE(d)

wE(d′)
=

∏
p|d,p-2NE

(−1
p

)
∏

p|d′,p-2NE
(−1
p

) =

(−1
f

)
(−1
f ′
) ,

where f = d/ gcd(d, 2NE) and f ′ = d′/ gcd(d′, 2NE). Note that f/f ′ = d/d′.
Then β2f/f ′ ≡ 1 mod×4, so f ≡ f ′ (mod 4), so

(−1
f

)
=
(−1
f ′
)
. 2
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Lemma 4.4. Suppose E and B are elliptic curves over Q, B(Q) has infinite
order, P ∈ B(Q), r is a rational function in Q(B), and P is not a zero or pole
of r. Then there exist a Q ∈ B(Q) of infinite order and an open neighborhood U
of O in B(R) such that if k ∈ Z and kQ ∈ U then wE(r(P +kQ)) = wE(r(P )).

Proof Let
V = B(R)×

∏

p|2NE

B(Qp)

and let g(z) = r(P + z)/r(P ) ∈ Q(B). Then g(O) = 1, and g induces a
function

g : V − {poles of g} → R×
∏

p|2NE

Qp,

which is continuous at O. Let Bn(Qp) denote the subset of B(Qp) of points
that, in a minimal Weierstrass model for B, have

ordp(x-coordinate) ≤ −2n

(see Exercise 7.4 on p. 187 of [S86]). Then the Bn(Qp)’s form a basis for the
open sets around O in B(Qp), and are subgroups of finite index in B(Qp).
Since g is continuous at O, there is an open neighborhood U of O in B(R) and
for every p | 2NE there is an np ∈ Z≥0 such that

g
(
U ×

∏

p|2NE

Bnp(Qp)
)
⊆ R+ ×

∏

p|2NE

(1 + 8NEZp).

Let kp = [B(Qp) : Bnp(Qp)] and let Q0 ∈ B(Q) be a point of infinite order. Let
Q = (lcmp|2NE{kp})Q0 ∈ B(Q). Then Q has infinite order, and Q ∈ Bnp(Qp)
for all p | 2NE. Now apply Lemma 4.3 with d = r(P + kQ), d′ = r(P ), and
β = 1. 2

Lemma 4.5. Suppose B is an elliptic curve over Q, Q ∈ B(Q) is a point of
infinite order, and U is an open subset of the identity component B(R)0 of
B(R). Then {k ∈ Z : kQ ∈ U} is infinite.

Proof Replacing Q by 2Q, we may assume that Q ∈ B(R)0. Note that B(R)0

is isomorphic to the unit circle in C∗, so every infinite subgroup is dense. Thus
{kQ : k ∈ Z} is dense in B(R)0, and the lemma follows. 2

5 Rank ≥ 5

Theorem 5.1. Suppose a ∈ Q − {0, 1,−1} and η = a2. Suppose Eη, fη, and
tη are as in Theorem 3.2. If wEη(fη ◦ tη(u1)) = −1 for some (u1, v1) ∈ Bη(Q),
and the Parity Conjecture holds for all quadratic twists of Eη, then Eη has
infinitely many non-isomorphic quadratic twists of odd rank ≥ 5 over Q.
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Proof Let P = (u1, v1), and let r(z) = fη ◦ tη ◦ x(z) ∈ Q(Bη), where the
function x gives the x-coordinate of a point. By Lemmas 4.4 and 4.5 with
E = Eη and B = Bη, there are Q ∈ Bη(Q) and infinitely many k ∈ Z such
that

wEη(r(P + kQ)) = wEη(r(P )) = −1,

so by the Parity Conjecture, E
(r(P+kQ))
η (Q) has odd rank.

For all but finitely many k ∈ Z, the rank of E
(r(P+kQ))
η (Q) is at least 4, by

Theorem 3.2(iii). Thus for infinitely many k, the rank of E
(r(P+kQ))
η (Q) is at

least 5. As argued in the proof of Theorem 3.2, for each squarefree d ∈ Q∗, the
set of u ∈ Q such that fη ◦ tη(u) and d differ by a rational square is finite, since
the hyperelliptic curve fη◦tη(u) = dz2 has only finitely many rational solutions
(u, z). Thus there are infinitely many non-isomorphic quadratic twists of Eη

of odd rank at least 5 over Q. 2

Corollary 5.2. Suppose

a ∈ {2, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 21, 22,

23, 24, 25, 26, 28, 30, 32, 33, 35, 36, 37, 39, 40, 41}.

If the Parity Conjecture holds for all quadratic twists of

Ea2 : y2 = x(x− 1)

(
x− 1− a2

a2 + 2

)
,

then Ea2 has infinitely many non-isomorphic quadratic twists of odd rank ≥ 5
over Q.

Proof With η = a2 and Pa = (u0, v0) ∈ Cη(Q) as in the proof of Theorem
3.2, and P ′η = (u1, v1) = (1 − η, (1 − η)(2 + η)) ∈ Cη(Q), one can check that
for each of the above a’s, at least one of wEη(fη ◦ tη(u0)) and wEη(fη ◦ tη(u1))
is −1. The result now follows from Theorem 5.1. 2
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Paris 314 (1992), 919–922.

[Me98] J-F. Mestre, Rang de certaines familles de courbes elliptiques d’invariant
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The powers of logarithm for quadratic
twists

Christophe Delaunay and Mark Watkins

Abstract

We briefly describe how to get the power of logarithm in the asymp-
totic for the number of vanishings in the family of even quadratic twists
of a given elliptic curve. There are four different possibilities, largely
dependent on the rational 2-torsion structure of the curve we twist.

1 Introduction

Let E be a rational elliptic curve of conductor N and ∆ its discriminant, with
Ed its dth quadratic twist. The seminal paper [CKRS] modelled the value-
distribution of L(Ed, 1) via random matrix theory and applied a discretisation
process to the coefficients of an associated modular form of weight 3/2. This
led to the conjecture that asymptotically there are cEX

3/4(logX)3/8−1 twists
by prime p < X with even functional equation and L(Ep, 1) = 0, where the 3/8
comes from random matrix theory, and the −1 comes from the prime number
theorem.

We wish to determine a similar heuristic for the asymptotic for the number
of twists by all fundamental discriminants |d| < X such that L(Ed, s) has even
functional equation and L(Ed, 1) = 0. We find that the power of logarithm that
we obtain depends on the growth rate of various local Tamagawa numbers of
twists of E. Because of this, it is somewhat unfortunate that isogenous curves
need not have the same local Tamagawa numbers. This is most particularly a
problem when we have a curve with full rational 2-torsion and it is isogenous
to one that only has one rational 2-torsion point; in this case, we should work
with the curve with full 2-torsion. This makes the statement of our result a
bit messy, but we have:

Heuristic 1.1. Let E be a rational elliptic curve. Then the number of even
quadratic twists Ed with L(Ed, 1) = 0 and |d| < X is asymptotically
c′EX

3/4(logX)bE+3/8 where c′E > 0 and

• bE = 1 when E (or a curve isogenous to it) has full rational 2-torsion,

• bE =
√

2/2 when E has one rational 2-torsion point (and no curve isoge-
nous to E has full 2-torsion),

• bE = 1/3 when E has no rational 2-torsion and ∆ is square.
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• bE =
√

2/2− 1/3 when E has no rational 2-torsion and ∆ is not square.

The 3/8 in the exponent comes from random matrix theory, and so we
only need concern ourselves with calculting bE. Also, we do not consider the
constant c′E, as that would greatly complicate the discussion.

2 Discussion

The discretisation for the values of L(Ed, 1) can be re-interpreted as saying
that

L(Ed, 1) < Ω(Ed)g(Ed)/T (Ed)
2 =⇒ L(Ed, 1) = 0

where Ω is the real period, g is the product of the Tamagawa factors, T is the
order of the torsion subgroup. This comes from the Birch and Swinnerton-
Dyer conjecture and the fact that the order of the Shafarevich-Tate group is
an integer. From random matrix theory, we expect that there is some constant
c > 0 such that the probability that L(Ed, 1) ≤ t tends to ct1/2(log |d|)3/8 as
t → 0. Combining this distribution with the discretisation, we get that (as
|d| → ∞)

Prob
[
L(Ed, 1) = 0

]
∼ c
√

Ω(Ed)g(Ed)/T (Ed)2(log |d|)3/8.

This becomes useful upon realising how these quantities vary in twist
families. In particular, we have (up to a factor of 2 that we ignore) that
Ω(Ed) = Ω(E)/

√
|d| while T (Ed) is constant for |d| sufficiently large. This

reduces our problem to a determination of how the Tamagawa product g(Ed)
varies; from the above we have that

Prob
[
L(Ed, 1) = 0

]
≈ c′

√
g(Ed)(log |d|)3/8/|d|1/4,

and so the number of twists should be (here the d are fundamental)

N(X) ∼
∑

|d|<X
Ed even

Prob
[
L(Ed, 1) = 0

]
≈
∑

|d|<X
Ed even

c′
√
g(Ed)(log |d|)3/8/|d|1/4.

and by partial summation we have that

N(X) ≈ c′′X3/4(logX)3/8
∑

|d|<X
Ed even

√
g(Ed),

We now compute the expected average value of
√
g(Ed) via an analysis of the

splitting behaviour of the cubic polynomial associated to E.
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3 Tamagawa numbers

For simplicity, we now restrict to twisting by positive fundamental discrimi-
nants d with gcd(d,N) = 1 and even sign in the functional equation.1 We
first isolate the contribution to the Tamagawa factor g(Ed) coming from the
primes that divide the discriminant of E, and call this g(E). Writing gp(Ed)
for the local Tamagawa number at p for the twist Ed, we have, up to a bounded
factor Bd which includes G(E) and other contributions from bad primes, that

g(Ed) = Bd ·
∏

p|d
gp(Ed).

We shall ignore Bd for the remainder of the discussion, as consideration of it
does not change the power of logarithm. Again possibly ignoring a finite set
of bad primes, when we twist by d, for primes p|d the local Tamagawa number
gp(Ed) at p for Ed is either 1, 2, or 4.2 If we write E in the form y2 = f(x),
these correspond to the cubic f having 0, 1, or 3 roots modulo p (provided
that this model for E is good at p).

We assume that we can use the Chebotarev density theorem to determine
the frequency of each splitting behaviour of the cubic f . When E has full
2-torsion, the cubic f splits completely over the rationals, so we have gp(Ed) =
4 for all p|d. When E has one rational 2-torsion point, the cubic f splits
over Q as a quadratic factor times a linear factor, and the quadratic splits
into two linear factors precisely when its discriminant is square mod p; thus
asymptotically half the primes p|d have gp(Ed) = 2, and the other half yield
gp(Ed) = 4. Finally, when f is irreducible over the rationals, we have two cases,
depending upon whether3 ∆ is square: when it is square (such as with x3 −
3x + 1), asymptotically 1/3 of the primes have gp(Ed) = 4 and the other 2/3
have gp(Ed) = 1; when the discriminant is not square, the local Tamagawa
factors are gp(Ed) = 1, 2, 4 in proportions 1/3, 1/2, and 1/6.4

1A rigourous accounting would also separate the d into congruence classes modulo the
discriminant (see [D]) but we omit this so as to focus on the main ideas. Indeed, the more
pedantic analysis would only modify the constant c′E and not the power of logarithm in the
asymptotic.

2We can note that for p > 2 we have gp(Ed) = gp(Ep?) where p? = p(−1)(p−1)/2, which
essentially eliminates the dependence on d.

3The fact that the elliptic curve discriminant ∆ and the discriminant of the cubic differ
by a factor of 16 does not affect our analysis.

4Our use of the Chebotarev density theorem is not quite legitimate in general. We
need to be more careful about our restriction to even twists (a condition that is given by
congruences modulo N), which can give incompatibility conditions, especially in the case
where f is irreducible and has non-square discriminant, as here the splitting condition cannot
be given by congruence conditions modulo N .
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4 Analytic number theory

The problem of computing the average value of
√
g(Ed) is now essentially

one of analytic number theory; for simplicity,5 we explain how to compute
the average value at positive fundamental discriminants d of the multiplicative
function h(d) =

√
g(Ed), and so wish to compute an asymptotic for

F (X) =
∑

d≤X
µ?(d)2h(d),

where the modified Möbius function (µ?)2 is the characteristic function of (pos-
itive) fundamental discriminants (this differs from µ2 only at the prime 2).
We analyse F (X) via the behaviour of the logarithm of the Euler prod-
uct

∏
p

(
1 + h(p)/ps

)
as s→ 1+. Explicitly, as s→ 1+ we have that (ignoring

the modification at the prime 2)

log
∏

p

(
1 +

h(p)

ps

)
∼
∑

p

h(p)

ps
∼ −(t1 + t2

√
2 + t4

√
4) log(s− 1),

where tk is the probability that h takes on the value
√
k, and the last step

is in analogy with the fact that
∑

p 1/ps ∼ − log(s − 1). Via exponentiation

we obtain
∏

p

(
1 + h(p)/ps

)
∼ c/(s − 1)A for some constant c 6= 0, where

A = (t1 + t2
√

2 + t4
√

4) > 0. An application of the Tauberian theorem (or
Perron’s formula) then gives us that F (X) ∼ c′X(logX)A−1 for some c′ 6= 0.

Finally, we conclude by computing the value of A in each of the four cases:

• (t1, t2, t4) = (0, 0, 1) and so A = 2 for the case of full 2-torsion;

• (t1, t2, t4) = (0, 1/2, 1/2) and so A = 1+
√

2/2 for the case of one rational
2-torsion point;

• (t1, t2, t4) = (2/3, 0, 1/3) and so A = 4/3 when there is no 2-torsion and
∆ is square;

• (t1, t2, t4) = (1/3, 1/2, 1/6) and so A = 2/3 +
√

2/2 when there is no
2-torsion and ∆ is non-square.
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Note on the frequency of vanishing of
L-functions of elliptic curves in a

family of quadratic twists

Christophe Delaunay

Abstract

In this note, we give an example of an elliptic curve E such that
for all prime discriminants d < 0 for which the sign of the functional
equation of the L-function of the quadratic twist Ed of E by d is +1,
we have L(Ed, 1) 6= 0. Furthermore, using the Birch and Swinnerton-
Dyer conjecture, we prove that the Tate-Shafarevitch group of Ed, for
all such d, has a trivial 2-part. Our method can be generalized to other
examples.

1 Notations and introduction

Let E be an elliptic curve defined overQ with conductorN and with L-function
L(E, s) =

∑
n a(n)n−s. From the work of Wiles, Taylor ([Wil], [Tay-Wil]) and

Breuil, Conrad, Diamond, Taylor ([Bre et al.]), L(E, s) can be continued to
the whole complex plane and satisfies a functional equation:

Λ(E, s) = ε(E)Λ(E, 2− s),

where ε(E) = ±1 is the sign of the functional equation and Λ(E, s) is given
by:

Λ(E, s) =

(√
N(E)

2π

)s

Γ(s)L(E, s).

Let d be a fundamental discriminant,
(
d
.

)
its associated quadratic character

and Ed the quadratic twist of E by d. Furthermore, we assume that d is
prime to N . Hence the conductor of Ed is Nd2, and the sign of the functional
equation of L(Ed, s) =

∑
n a(n)

(
d
n

)
n−s is

ε(Ed) = ε(E)

(
d

−N(E)

)
.

Classical questions are concerned with the distribution of the special values
L(Ed, 1) as d runs through discriminants with ε(Ed) = 1. For example, one
can ask for the density of those d such that L(Ed, 1) = 0 or for the density
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of those d such that p | |X(Ed)|, where p is a fixed prime and X(Ed) is the
Tate-Shafarevitch group1 of Ed. The Birch and Swinnerton-Dyer conjecture
gives a precise link between the value L(Ed, 1) and the order |X(Ed)| of the
Tate-Shafarevitch group.

Using elementary arithmetic on quadratic forms, we prove that if E is the
elliptic curve “17a1” in Cremona’s table ([Cre]) then for all prime discrimi-
nants d < 0 with ε(Ed) = 1, we have L(Ed, 1) 6= 0 and (using the Birch and
Swinnerton-Dyer conjecture) 2 - |X(Ed)|. Other examples can be handled
with the same method.

2 The example

Throughout this section E denotes the elliptic curve with conductor N = 17
defined by:

E : y2 + xy + y = x3 − x2 − x− 14.

We consider the quadratic twists Ed of E by discriminants d < 0 coprime with
N such that ε(Ed) = 1 (i.e. d ≡ 1, 2, 4, 8, 9, 13, 15, 16 mod 17). By a theorem
of Waldspurger ([Wal]), the values of L(Ed, 1) are related to the coefficients
c(n) of a weight 3/2 modular form. More precisely, we have:

L(Ed, 1) =
κ√
|d|
c(|d|)2, (2.1)

where κ is a constant (here κ ≈ 2.74573911) and where the modular form of
weight 3/2, computed by Tornaria ([Tor]), is given by:

∑

n

c(n)qn =
θ1(q)− θ2(q)

2

with:

θ1(q) =
∑

(x,y,z)∈Z3

q3x2+23y2+23z2−2xy−2xz−22yz

θ2(q) =
∑

(x,y,z)∈Z3

q7x2+11y2+20z2−6xy−4xz−8yz.

We have:

Theorem 1. If d < 0 is a prime discriminant with ε(Ed) = 1, the coefficient
c(−d) is odd.

1The Tate-Shafarevitch group of an elliptic curve E is some “cumbersome” group which,
roughly speaking, measures the obstruction of a certain “local-global” principle (see [Sil] for
a precise definition). It is conjectured that it is a finite group and, if so, one can prove that
its order is a perfect square.
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Proof Let d be such a discriminant and p = −d. Remark that we have p ≡ 3

mod 4 and that
(
−17
p

)
= 1. We let:

Q1(x, y, z) = 3x2 + 23y2 + 23z2 − 2xy − 2xz − 22yz

Q2(x, y, z) = 7x2 + 11y2 + 20z2 − 6xy − 4xz − 8yz.

We consider the following sets:

R1 = {(x, y, z) ∈ Z3, Q1(x, y, z) = p}
R2 = {(x, y, z) ∈ Z3, Q2(x, y, z) = p}

and we must prove that |R1| − |R2| ≡ 2 mod 4. In fact, the two ternary
quadratic forms Q1 and Q2 are invariant by the involutions ι : (x, y, z) 7→
(−x,−y,−z) and τ : (x, y, z) 7→ (x−z, y−z,−z). Hence, if P = (x, y, z) ∈ Ri

(for i = 1, 2), then P, ι(P ), τ(P ) and ι ◦ τ(P ) also belong to Ri and these 4
points are distinct except if z = 0. Thus,

|Ri| ≡ |{(x, y) ∈ Z2, Qi(x, y, 0) = p}| mod 4.

Hence for |R1| mod 4, we are led to study the number of solutions of

p = 3x2 − 2xy + 23y2 = q1(x, y)

and for |R2| mod 4 the number of solutions of

p = 7x2 − 6xy + 11y2 = q2(x, y).

There are 8 classes of primitive quadratic forms with discriminant ∆ = −24×17
modulo SL2(Z). As a set of representatives we can choose the 8 following ones:

q1(x, y) = 3x2 − 2xy + 23y2 q1(x, y) = 3x2 + 2xy + 23y2

q2(x, y) = 7x2 − 6xy + 11y2 q2(x, y) = 7x2 + 6xy + 11y2

q3(x, y) = 8x2 − 4xy + 9y2 q3(x, y) = 8x2 + 4xy + 9y2

q4(x, y) = 4x2 + 17y2 q5(x, y) = x2 + 68y2

Since we have
(
−17
p

)
= 1, the prime p must be represented by one of these

forms. Since p ≡ 3 mod 4, the prime p cannot be represented by the forms
q3, q3, q4 and q5. Hence, we have two possibilities:

• The prime p is represented by q1 with only 2 solutions (and so it is for
q1) and p is not represented by q2 (neither by q2).

• The prime p is not represented by q1 hence it is by q2 with only 2 solutions
(and so it is by q2).

In each case, we conclude that |R1| − |R2| ≡ 2 mod 4 and so c(p) is odd. 2



198 C. Delaunay

Corollary 2. Let d < 0 be a prime discriminant such that ε(Ed) = 1, then we
have L(Ed, 1) 6= 0.

Proof Indeed, c(|d|) is odd so by equation (2.1) we have L(Ed, 1) 6= 0. 2

Remarks.
1- By the results of [Kol] and [BFH] or [Mu-Mu] we deduce that the rank of
Ed(Q) is 0 and that its Tate-Shafarevich group is finite.
2- It is a classical question to understand the ratio of d such that L(Ed, 1) = 0.
Using random matrix theory and its link with L-functions, Conrey, Keating,
Rubinstein and Snaith ([CKRS], [CKRS2]) have conjectured that if E is an
elliptic curve over Q, there exists a constant cE > 0 such that:

∑

p6T
−p discriminant
ε(E−p)=1
L(E−p,1)=0

1 ∼ cET
3/4 log(T )−5/8

So, corollary 2 implies that the constant cE can be 0.

Corollary 3 (under the Birch and Swinnerton-Dyer conjecture). For
all prime discriminants d < 0 such that ε(Ed) = 1 we have 2 - |X(Ed)|.

Proof For such a discriminant, we already know that L(Ed, 1) 6= 0 and, in
our example, the Birch and Swinnerton-Dyer conjecture predicts that:

|X(Ed)| = c(|d|)2

Hence, |X(Ed)| is odd. 2

Remarks.
1- This seems to be in contradiction with the heuristic in [De1] which would
have suggested a density of about 58% of |X(Ed)| divisible by 2. Note that for
odd primes p, the numerical data, performed by Rubinstein ([Rub]), about the
density of |X(Ed)| divisible by p are in close agreement with the predictions
given by the heuristic (except for the p dividing |E(Q)tors|). In fact, as we have
seen, the effect of taking only prime discriminants d has a large consequence
on the 2-divisibility of S(Ed). This effect seems to disappear if we consider
all discriminants d < 0 such that ε(Ed) = 1. For example, the density of the
fundamental discriminants −108 < d < 0 such that 2 | S(Ed) is about 61.3%.
We expect that the correct density is the one predicted by the heuristic but
that the convergence is slow.
2- Using a 2-descent argument, it can be directly proved that the 2-parts of
the Tate-Shafarevich groups X(Ed) are all trivial and that the rank of Ed are
all 0 whenever d < 0 runs through fundamental prime discriminants such that
ε(Ed) = 1 ([Ant-Bun-Fre, exemple 1]). Hence, our results may also be seen
as a check of the 2-part of the Birch and Swinnerton-Dyer conjecture for our
family of quadratic twists.
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3- Using also a 2-descent argument, one can obtain similar results for the case
of “odd” quadratic twists of E by prime discriminants d < 0 ([De-Ro]): more
precisely, if d < 0 is a prime discriminant such that ε(Ed) = −1 then we
have L′(Ed, 1) 6= 0 and 2 - |X(Ed)| (using a weak version of the Birch and
Swinnerton-Dyer conjecture).

3 Generalization

Of course, our method can easily be adapted for many other examples (for
instance E =“15a1”, “21a1”, “33a1”...). However, when the conductor N of
the elliptic curve E is not prime, then the discriminants d < 0 should satisfy
some more local conditions at the primes dividing N ; indeed, if we want, for
example, to apply the Kohnen-Zagier’s theorem ([Koh-Zag]) for finding the
weight 3/2 modular form, we must have, for all prime ` | N ,

(
d
`

)
= ε`, where

ε` is the eigenvalue of the Atkin-Lehner operator at `. For instance, if we
take E = 15a1, we prove, using the same technics as above, that for all prime
discriminants d < 0 such that

(
d
3

)
= 1 and

(
d
5

)
= −1 then L(Ed, 1) 6= 0 and

S(Ed) is not divisible by 2.
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Discretisation for odd quadratic twists

J. Brian Conrey, Michael O. Rubinstein, Nina C. Snaith
and Mark Watkins

Abstract

The discretisation problem for even quadratic twists is almost under-
stood, with the main question now being how the arithmetic Delaunay
heuristic interacts with the analytic random matrix theory prediction.
The situation for odd quadratic twists is much more mysterious, as the
height of a point enters the picture, which does not necessarily take
integral values (as does the order of the Shafarevich-Tate group). We
discuss a couple of models and present data on this question.

1 Introduction

Let E : y2 = x3 + Ax + B be a fixed rational elliptic curve, and consider the
sets S+(X) and S−(X) of quadratic twists of E that contain respectively the
even1 and odd twists Ed : dy2 = x3 + Ax + B with |d| < X a fundamental
discriminant. For even twists, the Birch–Swinnerton-Dyer conjecture [BSD]
states that

L(Ed, 1) = Ωd
gd ·#Xd

T 2
d

where Ωd is the real period, gd is the global Tamagawa number, Xd is the
Shafarevich-Tate group,2 and Td is the order of the torsion subgroup, all of
these quantities being with respect to the quadratic twist Ed. Random matrix
theory applied with orthogonal symmetry [CKRS] predicts that

Prob
[
L(Ed, 1) ≤ x

]
≈ x1/2(log |d|)3/8 as x→ 0, (1.1)

where we use the ≈ notation to indicate that the quotient of the two sides
tends to an unspecified constant that depends on E. Since #Xd is a square
while gd and Td are well-understood integers, we get a discretisation from (1.1)
— we expect that L(Ed, 1) = 0 if, say, we have that L(Ed, 1) < gdΩd/T

2
d .

Because Ωd essentially acts like ≈ 1/
√
|d|, this gives a rough prediction that

Prob
[
L(Ed, 1) = 0

]
≈ (log |d|)C/|d|1/4

1A twist is even if the order of vanishing of its L-function at s = 1 (that is, its analytic
rank) is even, which is the same as saying that the sign of its functional equation is +1;
similarly for odd twists.

2We allow the order to be zero, in which case we suspect a curve of higher rank.
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as |d| → ∞, where the constant C is well-understood, largely dependent on the
rational 2-torsion structure of E. Finally, these heuristics lead to a conjecture
about the number of positive rank twists in S+(X), namely that there should
be about ≈ X3/4(logX)C of them as X →∞.

The situation is somewhat different for odd twists; here we have that
L(Ed, 1) = 0 from the functional equation, and now the BSD conjecture takes
into account the regulator Rd:

L′(Ed, 1) = Ωd
gd ·Rd#Xd

T 2
d

.

This regulator is rather mysterious, and, as in the case of regulators and
class numbers for real quadratic fields, does not seem totally disjoint from
the Shafarevich-Tate group. The heuristic of Delaunay [D] gives some idea of
how we might expect #X to be distributed, but for the regulator we have
only the lower bound of size c log |d| of Silverman [Si] and a conjectured upper
bound3 of |d|1/2+ε of Lang [L].

Also, the analogue of (1.1) has a different exponent; we have4

Prob
[
L′(Ed, 1) ≤ x

]
≈ x3/2(log |d|)3/8 as x→ 0. (1.2)

In analogy with the class number problem5 we might be so bold as to guess
that Rd#Xd is always large if nonzero, say as big as |d|1/2−ε. Since Ωd acts
like ≈ 1/

√
|d|, this then implies that L′(Ed, 1) � 1/|d|ε. More generally, we

might guess that

¿ L′(Ed, 1)� 1/|d|θ for curves of analytic rank 1 ? (1.3)

This, our early suspicion, has not been confirmed by experiment (see Section 4),
but we do not yet totally discount the possibility. A more formalised discussion
could include the following. For L(Ed, 1), we used a sharp-cutoff, but this
might not be so applicable for curves of positive rank, due to the fungibility of
the regulator. We can re-write the rank 0 case as follows: first let D0(t) be the
density function such that

∫ t
0
D0(t) dt = Prob

[
L(Ed, 1) ≤ t

]
; then our above

discretisation just says that Prob
[
L(Ed, 1) = 0

]
=
∫∞

0
D0(t)χ(t) dt where χ(t)

is the characteristic function6 of the interval
[
0, gdΩd/T

2
d

]
. In the rank 1 case,

we similarly have a distribution D1(t) which integrates to the probability, and
so we might guess that

Prob
[
L′(Ed, 1) = 0

]
=

∫ ∞

0

D1(t)F (t) dt (1.4)

3Assuming BSD and GRH we essentially get Lang’s conjecture; in place of GRH, by
bounding L′(Ed, 1) via convexity, we get a crude upper bound of |d|1+ε.

4The exponent on the logarithm is −r2/2 + r/2 + 3/8, where r is the order of the zero
enforced at s = 1; see [Sn1] for the general case, and [Sn2] for the case r = 1.

5Note, however, that our L-values are at the center of the critical strip, while those for
the class number problem are at the edge.

6Although some have expressed doubt that such a sharp cutoff is correct in the rank 0
case, we have no evidence either way; it is thought that this should only affect the leading
constant in the heuristic.
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for some7 “cutoff” function F (t). The condition of (1.3) could have F (t) be
the characteristic function of

[
0,
(
gdΩd/T

2
d

)
· d1/2−θ]. For simplicity, we shall

present our heuristics in terms of (1.3), though all of our discussion could use
the more general formulation of (1.4).

From (1.3), in analogy with the above argument for the rank 0 case (and
ignoring logarithmic factors) we obtain that as |d| → ∞ we have

Prob
[
L′(Ed, 1) = 0

]
≈ 1/|d|3θ/2,

so that the number of twists of rank greater than 1 should be about X1−3θ/2 as
X → ∞. Note that the only provable (assuming BSD) bound is (essentially)
that L′(Ed, 1) � 1/

√
|d|, which would lead to a prediction of only X1/4 odd

twists of rank greater than 1. However, for an infinite family of curves E
and under the assumption of the Parity Conjecture, Rubin and Silverberg
[RS][RS2, §8.2] can prove that there are � X1/3 twists of rank at least 3.

The above conjecture (1.3) would imply that Rd and Xd are linked in a
mysterious way; if we have a generator of small height (so that Rd is small),
then this tends to make Xd be larger than general. The constructions of
Rubin and Silverberg by their very nature yield points that are of height that
is polynomial in log |d| — indeed, almost any parametrised family will have
this feature, as writing down points of larger height is not feasible. These facts
together suggest that by taking families with small generators we can generate
large values of X. However, this does not work quite so simply in practise —
we do get large values of X, but not always (as we will see in Section 4). This
is one of the reasons why we might suggest the “statistical” version (1.4) with
a more general cutoff function F rather than simply (1.3).

2 A model from Heegner points (largely due

to Birch)

Suppose that E has rank zero and d < 0 is a fundamental discriminant that
is a square modulo 4N , where N is the conductor of E, and also assume for
simplicity that gcd(d, 6N) = 1. By work of Gross and Zagier [GZ], we have
a construction for a point Pd on Ed that gives a torsion point precisely when
the rank of Ed is greater than 1; indeed, the height λ of the constructed point
is proportional to L′(Ed, 1):

λ(Pd) =

√
|d|

4Ωvol

L(E, 1)L′(Ed, 1),

7Such a general cutoff function could be rephrased, for instance, as predicting that (1.3)
holds except for a proportionately small number of exceptions. As an example, taking
F (t) ≡ 1 on

[
0, 1/
√
d
]

and F (t) = 1/t
√
d for

[
1/
√
d, 1] and F (t) ≡ 0 for t > 1, we get

Prob
[
L′(Ed, 1) = 0

]
≈ 1/d1/2, and so θ = 1/3 in this statistical sense. Our cluelessness

about F stems from our inability to model heights of points.
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where here Ωvol is the area of the fundamental parallelogram associated to a
minimal model for E. When the rank of Ed is 1, the point Pd has infinite
order but is not in general a generator of the free part of the group of rational
points; the index of Pd depends on #Xd, but cancels out in the end.

The construction of the point Pd goes via class-field theory; we get a point
Ud over the Hilbert class field via a complex multiplication result largely due
to Shimura, and then sum the conjugates to get a point first in the imaginary
quadratic field Q(

√
d) and then in Q itself. The number of conjugates of Ud in

the Hilbert class field is essentially the class number h of Q(
√
d). These points,

all being conjugate, have the same height. To get the height of the resulting
point in Q, we model the situation by assuming that we are summing h unit
vectors in h-dimensional space; this leads to the prediction that the height is
almost surely close to h, which is of size

√
|d|. If we assume the height of Ud is

not too small we then get a prediction of L′(Ed, 1)� 1/|d|ε, leading to about
X1−ε twists in S−(X) which have rank 3 or greater. However, it is not clear
why the height of Ud might not be of size 1/|d|C itself, as its coordinates are
in a field whose degree is of size

√
|d|.

We can try to test the validity of this model by taking d with L′(Ed, 1)
small and then computing the height of the point Ud in the Hilbert class field.
However, when the class field has large degree (that is, when the class number
is large), it will be difficult to recognise the coordinates of Ud, so we cannot
take |d| too large here. We were thus unable to generate enough examples to
perform any real test of the model.8

3 Alternative ideas

A less profound idea is to assert that the connection between rank 1 and rank
3 twists should be the same as the connection between rank 0 and rank 2
twists, to a first approximation. Heuristics and random matrix theory [CKRS]
give X3/4+ε rank 2 curves amongst even quadratic twists up to X. If we thus
guess that there about X3/4 twists of rank 3 up to X, via reverse-engineering
the argument of two sections previous, this could then be used to determine a
value of θ = 1/6.

We note that there are two random matrix models that have been pro-
posed for modeling the zeros of L-functions associated with elliptic curves.
The prediction (1.2) of Snaith [Sn1] is extended to higher ranks by looking
at a zero-dimensional subset of SO(even) (for even twists) or SO(odd) (for

8In upcoming work with S. R. Donnelly, the fourth-named author has instead fixed d
(of small class number) and varied over E, to attempt to test the model. Also, as this
model predicts something (up to guessing the height of Ud) about the distribution for the
height of Pd, it thus also indicates something about the L′(Ed, 1) distribution; our use of the
Heegner point model to choose the cutoff for (1.3) does not immediately seem more justified
than reversing this interaction and using (1.3) to choose the cutoff for the distribution given
by the model here.
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odd twists) with r eigenvalues conditioned to lie at 1. This model predicts
Prob[L(r)(Ed, 1) 6 x] ≈ xr+1/2(log x)−r

2/2+r/2+3/8. In contrast, Miller [M2]
proposes what is called the Independent Model, with eigenvalue distribution
decomposing as a sum of (2br/2c + 1) point-masses and the eigenvalue dis-
tribution of the symmetry group SO(even) or SO(odd). In this case the rth
derivative analogue of (1.1) and (1.2) is given by (1.1) for SO(even) symmetry
and (1.2) for SO(odd) symmetry. There is both theoretical evidence [M1, Y]
and numerical data [M2] that the 1- and 2-level densities of zeros follow Miller’s
Independent Model for L-functions associated with parameterised families of
elliptic curves with r constructed points that generate (the infinite part of)
the Mordell-Weil group. But there is no evidence to suggest that the Miller
model should hold for quadratic twists, and in fact the exponent 3/2 in (1.2)
is supported by the shape of the value distribution of L′(Ed, 1) (see Figure 4.1)
as well as by the results in Section 4.1. This illustrates that for odd twists the
zero of L(Ed, s) at s = 1 is apparently not independent — in contrast to a case
of Young’s [Y] where the zero came from a constructed rational point on the
elliptic curve.

Finally there is a model due to A. Granville. Let E be a fixed elliptic
curve given by the model y2 = x3 + Ax + B. Here we make a heuristic for
the number of integral points (d, u, v, w) with dw2 = v(u3 + Auv2 + Bv3)
and D < |d| < 2D and X < |u|, |v| < 2X. There are about ≈ X2 such (u, v)-
pairs, and each leads to a right-hand side which is of size X4. The number
of integers that are of size X4 and are d times a square with D < |d| < 2D
is ≈ D

√
X4/D, and thus the probability that an integer of size X4 is of this

form is ≈
√
DX4/X4. Multiplying this by our ≈ X2 possibilities for (u, v),

we get a total of ≈
√
D integral solutions, independent of X. Summing this

dyadically over X, we get ≈
√
D log Y total solutions up to Y , and switching

to logarithmic heights, we get9 that the number of points of height less than H
on the first D twists of E is ≈ H

√
D. We then note (under GRH) that Ed has

regulator at most size |d|1/2+ε; if Ed is of rank 3, since a random 3-dimensional
lattice of this covolume should have a vector whose length is of size (|d|1/2+ε)1/3,
we then expect a point of height less than |d|1/6+ε on Ed. From the above with
H = |d|1/6+ε, we expect no more than about D1/2+1/6+ε such twists up to D.
Note that this only counts generators on Ed, and not all rational points on
the twisted curve; up to height h, a rank r curve should (asymptotically) have
hr/2/

√
Rd rational points. With h = Rd ≈ |d|1/2 and r = 3, we get |d|1/2 points

up to height |d|1/2 on each rank 3 twist, and taking H = |d|1/2 in the above
accounting, we get no more than D1/2+ε rank 3 twists up to D.

The prediction of ≈ H
√
D such (d, u, v, w)-tuples can be proved via a sieve

argument for small H, but is more dubious for large H. Indeed, the above-
noted count of hr/2/

√
R rational points up to height h on a rank r curve

9This is a simplification; Granville uses congruences rather than this crude probabilistic
method, and gets Hη

√
D where η is the number of rational factors of the cubic polyno-

mial x3 +Ax+B. So our case is when the cubic is irreducible.
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outgrows the linear prediction (as H → ∞) with r = 3. However, we only
need H to be a small power of D, and it is unclear how far the heuristic can
be pushed.

4 Data

We now give tables and graphs that concern the above heuristics and conjec-
tures. In our first graph (Figure 4.1), we plot the L′ values for odd twists of
X0(11) with |d| < 106. We are most concerned with the behaviour as L′ → 0,
so we zoom in on this point; there are about 300000 total curves, of which 760
have L′ = 0.
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Figure 4.1: Cumulative L′-distribution for odd twists ofX0(11) for |d| < 106.

From this graph, it looks as though there is an abrupt cutoff. We find that
the smallest nonzero value of L′(Ed, 1) is about 0.051 for d = 477121. However,
it might be superior to look at the distribution of L′(Ed, 1)/

(
log |d|

)
, as the

average value of L′(Ed, 1) is proportional to log |d| (see [BFH, I, MM]). This
changes the picture quantitatively (see Figure 4.2), as the gap size becomes
comparable to that of the L-distribution at the top of the graph.10

We compare the situation between even and odd twists. For |d| < 106

there are about 30 times more even twists with L(Ed, 1) = 0 than odd twists
with L′(Ed, 1) = 0; however this factor of 30 is dependent on our cutoff of 106,
and as we note below, it is not clear what happens asymptotically. If we

10It can be noted that log |d| is about size |d|1/6 for our d, and thus it becomes difficult
to distinguish in our data between a logarithm and a power of d.
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Figure 4.2: Cumulative distributions for L (top) andnormalised L′ for |d| <
106.

restricted our range of d to a shorter interval, say 9 · 105 < |d| < 106, then
the upper graph of L-values would be close to steplike, since the size of d is
the only continuous variable in the BSD formula. However, the lower graph
would still be rather smooth, as the regulator cannot be modelled as a discrete
variable in the rank 1 case.

We let S−0 (X) be the subset of S−(X) with L′(Ed, 1) = 0, suppose that
#S−0 (X) ∼ cXA(logX)B and try to fit the data to get the exponent A.
For X0(11) there are 760 odd twists with L′ = 0 with |d| < 106. The best-fit
exponent is A = 0.86, though if we just look at the last 380 curves, we get
A = 0.82. The computations of Elkies11 [E] for X0(32) go up to 107, and
give A = 0.84 overall with A = 0.80 for the last half of the data; of course,
we are ignoring log-factors. For X0(14) we get A = 0.94 and for X0(15) we
get A = 0.95. These might seem large, but Elkies has A = 0.93 at 106 before
it drops to A = 0.86 at 107. Also, since X0(14), X0(15), and X0(32) all have
nontrivial 2-torsion while X0(11) does not, we might expect the exponent of
the logarithm to be larger for them, which could lead to a larger observed
value of A across the range of our dataset. For comparison with the even
twist case, the dataset of Rubinstein [R] for the number of rank 2 imaginary
quadratic twists of X0(11) has best-fit exponents of about 0.89, 0.86, 0.84 up
to 106, 107, 108, while we expect the exponent to be 0.75.

To get a dataset of twists with points of small height, we looked at the dth
twist of y2 = x3−1 for d = t3−1; the curve dy2 = x3−1 will have the point (t, 1)

11He divides even fundamental discriminants by 4, so has different curve counts.
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whose height is of size of log d. As mentioned above, if (1.3) holds, we would
expect such curves to have large values of #Xd. Though we get some large
examples like t = 624 and d = 242970623 for which #Xd = 472, this idea
does not always work so well. For instance, with t = 810 and d = 531440999
we have #Xd = 1, where here we have L′(Ed, 1) ≈ 0.0315; similarly t = 902
and d = 733870807 has #Xd = 1, though in this case L′(Ed, 1) ≈ 0.0546 is
not quite so small. Relatedly, the results of Delaunay and Duquesne [DD] for
curves connected to the simplest cubic fields show #X = 1 to occur often.

More extensive experiments with techniques similar to those of Elkies are
planned — indeed, it would be nice to have data for the odd twists comparable
to that which [CKRS2] has for even twists. Our experiments for odd twists
have simply computed the value of L′ for every twist up to X and so takes
X2 total time, while the method of Elkies takes X3/2 time, as does12 the
computation of [CKRS2].

4.1 Quadratic twists in arithmetic progressions

We note that the computations of Elkies [E] already give indirect evidence
that (1.2) is probably correct. While Elkies notes a strange discrepancy in
the counts Ed with rank 3 for d modulo 16, in fact, as explained in the last
section of [CKRS], we expect such discrepancies for all (prime) moduli p whose
Frobenius trace ap is nonzero. In particular, of the d with Ed ∈ S−0 (X) we
expect that the number of nonzero quadratic residues mod p is not the same as
the number of quadratic nonresidues. The derivation in [CKRS] gives a ratio of(p+1+ap
p+1−ap )k where the exponent k = −1/2 is taken to be the rightmost pole of the

distribution function; in the rank 1 case, the corresponding calculation of [Sn1]
implies that we should take k = −3/2. This is a reasonably testable prediction,
given that the dataset of Elkies has 8740 curves. In Table 1 we give the results
for some primes that are 1 mod 4; since ap = 0 for other odd primes the ratio
should be 1, and indeed it is always quite close. Here the R and N columns
count the d for which Ed has rank 3 and d is respectively a nonzero quadratic
residue and a quadratic nonresidue mod p, while the E column calculates their
experimentally-determined ratio, and C is the conjectured ratio from the above
with k = −3/2.

Note that the fit is not as tight for small primes; indeed this also shows up in
the even rank case, even when accounting for a secondary term as in [CPRW].
Given our dataset size, the confidence interval width for the experimental value
is about 0.1 across most of our data range. If we take all the primes up to
1000 and do a fit for the best k, we get a result of −1.41, which is reasonably
close to our expected value of −3/2. This gives us a modicum of confidence
that (1.2) is correct; we hope a consideration of the secondary term will give
an even better fit.

12With convolution techniques this reduces to essentially linear time, which is one reason
why we seek to improve on [E] via p-adic computations and Θ-series.
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Table 1: Residuosity effects in arithmetic progressionsfor rank 3 quadratic
twists for the congruentnumber curve (data from Elkies)

p R N E C
5 4240 1951 2.17 2.83

13 1827 5580 0.33 0.25
17 3186 4197 0.76 0.72
29 5873 2249 2.61 2.83
37 4451 3820 1.17 1.17
41 2711 5411 0.50 0.48
53 2672 5723 0.47 0.45
61 5239 3245 1.61 1.63
73 4696 3688 1.27 1.28
89 3648 4828 0.76 0.72
97 2958 5526 0.54 0.57

929 4836 3876 1.25 1.16
937 4679 4035 1.16 1.13
941 4807 3922 1.23 1.20
953 4196 4524 0.93 0.92
977 4791 3929 1.22 1.21
997 4019 4712 0.85 0.83

4.2 Beyond twists

To go further, we can look at generic elliptic curves (rather than just twists);
for this the database of Stein and Watkins [SW] is useful. We suspect a bound
like L′(E, 1) � 1/|∆|θ/6 in analogy with the prediction (1.3) of L′(Ed, 1) �
1/|d|θ for quadratic twists.13 However, as above, we really have no idea
how to generate a good value of θ. The Stein-Watkins database (ECDB)
has 11372286 curves of prime conductor less than 1010 (we make the choice
of prime conductor so as to exclude twists from our data; looking at other
curves does not change the result too much), of which 5253162 have analytic
rank 1. The minimal L′-value for these curves is about 0.193 for the curve14

[0, 0, 1,−76931443,−259719125220] of conductor 8519438341. We get15 423944

13This analogy comes from the fact that the discriminant grows like d6 in quadratic
families, and our impression is that the discriminant is better than the conductor as a
measure of the likelihood that the L-derivative vanishes. Actually we might suspect the real
period to be the most significant datum in general, but it should be approximately |∆|1/12

up to log-factors. In any case, considering the conductor is more difficult, even with the
ABC conjecture.

14Here and below a curve y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 is denoted by

[a1, a2, a3, a4, a6].
15The usual caveats about not being able to prove that a curve actually has analytic rank r

when r ≥ 4 apply here.
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curves of analytic rank 3, and 1296 of analytic rank 5. In Figure 4.3 we again
see fewer curves with small normalised L′-value with the normalised gap for
L′ about as big as that for L.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0  0.1  0.2  0.3  0.4  0.5

Figure 4.3: Cumulative L and normalised-L′ distributionfor ECDB curves.
The plot going from thelower-left to the upper-right is that for L′.

It was noted to us by N. D. Elkies that the small values of L′ correspond to
curves with large cancellation between c3

4 and c2
6. See Table 2 for the smallest

values of L′ in the database. For the even rank case, the smallest 85 L-values all
come from Neumann-Setzer [N, Se] curves (with conductor of the form u2+64),
with the next smallest coming from [1, 1, 1,−2413424773,−45636080008772] of
conductor 6375846313; these thus similarly exhibit large cancellation between
c3

4 and c2
6. Indeed, many of the curves come from families similar to those

investigated by Delaunay and Duquesne [DD].
Following a suggestion of A. Venkatesh, we might speculate whether all

the small L′ values (possibly including L′ = 0) essentially come from a small
number of parametrised families. However, we can make a heuristical argu-
ment against the analogous claim that all rank 2 curves should come from
parametrised families. A heuristic of Watkins [W] gives that there should be
at least X19/24−ε curves of analytic rank 2 with conductor less than X, whereas
we expect16 there only to be about X2/3+ε curves with two small generators.

We can go to curves of larger rank and look at the distribution of L′′(E, 1)/2!

16This type of heuristic appears (though not explicitly) in the work of Elkies and
Watkins [EW]. They only consider small generators that are integral, but by passing to
rationality we only lose logarithmic factors.
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Table 2: Small L′-values for prime conductor curves inthe Stein-Watkins ECDB

L′ conductor equation
0.193 8519438341 [0, 0, 1,−76931443,−259719125220]
0.217 8072290789 [0,−1, 1,−168735150, 843694875000]
0.218 7807742161 [1, 0, 0,−162115427, 794469530026]
0.219 7598316169 [1,−1, 1,−157763487, 762746660718]
0.219 972431659 [1,−1, 0,−42359524,−106103907983]
0.220 7344220789 [1,−1, 1,−153528564, 732242039802]
0.225 6436262197 [1,−1, 1,−133616676, 594515948970]
0.226 6347138731 [0, 1, 1,−131764782, 582122479302]
0.226 2829273949 [1,−1, 1,−119862711,−505066414494]
0.229 5907969559 [1,−1, 1,−122639979, 522783273972]

and L′′′(E, 1)/3! for curves of (analytic) rank 2 and 3 in the database. If we ig-
nore various examples of small conductor, the smallest value of L′′(E, 1)/2! for
a curve of larger conductor is about 1.554 for the curve [0, 0, 1,−2664919573,
−52951013063110] of conductor 6264757621, where again we see the large can-
cellation between c3

4 and c2
6. For rank 3 the smallest value of L′′′(E, 1)/3!

for curves of larger conductor is about 8.089 for the curve [0, 0, 1, −7990342,
8693530176] whose conductor is 1531408357. Though there is large cancel-
lation between c3

4 and c2
6 here, it is not as noticeable as in the cases above;

however, the large cancellation appears again for the next-notable curve [0, 0, 1,
−217363231, 1233466148550] of conductor 6352778197 for which L′′′(E, 1)/3! ≈
8.24. As noted above, it is better to divide the L(r)-values through by the ex-
pected average value, which is proportional to (logN)r, before making these
comparisons; upon doing this, the listed curves of conductor 6264757621 and
conductor 6352778197 have the smallest respective values.

5 Conclusion

Via analogies with random matrix theory, we have given a link (as in the
case of rank 2 quadratic twists) between the distribution of L′-values and
the number of rank 3 quadratic twists, but are unable to gain much insight
into solving the discretisation problem. Although we might expect a smooth
distribution function for L′(Ed, 1) (especially as it is an analytic and not an
arithmetic object), there is some evidence of a rather abrupt cutoff in the
distribution. This has led some of the authors of this paper to conjecture (1.3)
in a universal form, while others remain more skeptical and propose something
along the lines (with a smooth cutoff function) of (1.4) instead.17 We have also

17It may be noted that (1.3) has been referred to as the “Saturday Night Conjecture” due
its formulation on a Saturday night at the Isaac Newton Institute.
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discussed various methods for modelling the number of rank 3 quadratic twists
of a given elliptic curve. However, currently we do not have enough data to
feel confident in eliminating any of the suggestions.
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Secondary terms in the number of
vanishings of quadratic twists of

elliptic curve L-functions
J. Brian Conrey, Atul Pokharel, Michael O. Rubinstein

and Mark Watkins

Abstract
We examine the number of vanishings of quadratic twists of the

L-function associated to an elliptic curve. Applying a conjecture for
the full asymptotics of the moments of critical L-values we obtain a
conjecture for the first two terms in the ratio of the number of vanishings
of twists sorted according to arithmetic progressions.

1 Introduction

Let E be an elliptic curve over Q with associated L-function given by

LE(s) =
∞∑

n=1

an
ns

=
∏

p|∆

(
1− app−s

)−1
∏

p-∆

(
1− app−s + p1−2s

)−1
(1.1)

=
∏

p

Lp(1/ps), <(s) > 3/2. (1.2)

Here, ∆ is the discriminant of E, and ap = p + 1 − #E(Fp), with #E(Fp)
the number of points, including the point at infinity, of E over Fp. LE(s) has
analytic continuation to C and satisfies a functional equation [12] [11] [1] of
the form

(
2π√
Q

)−s
Γ(s)LE(s) = wE

(
2π√
Q

)s−2

Γ(2− s)LE(2− s), (1.3)

where Q is the conductor of the elliptic curve E and wE = ±1.
Let

LE(s, χd) =
∞∑

n=1

anχd(n)

ns
(1.4)

be the L-function of the elliptic curve Ed, the quadratic twist of E by the fun-
damental discriminant d. If (d,Q) = 1, then LE(s, χd) satisfies the functional
equation
(

2π√
Q|d|

)−s
Γ(s)LE(s, χd) = χd(−Q)wE

(
2π√
Q|d|

)s−2

Γ(2− s)LE(2− s, χd).
(1.5)
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In [5] and [6] conjectures, modeled after corresponding theorems in random
matrix theory, are stated concerning the distribution of values of LE(1, χd) with
an application made to counting the number of vanishings of LE(1, χd). We
focus on the case wEχd(−Q) = 1, since otherwise LE(1, χd) is trivially equal
to zero. One quantity studied concerns the ratio of the number of vanishings
sorted according to residue classes mod q for a fixed prime q - Q. Let

Rq(X) =

∑
|d|<X,wEχd(−Q)=1

LE(1,χd)=0
χd(q)=1

1

∑
|d|<X,wEχd(−Q)=1

LE(1,χd)=0
χd(q)=−1

1
(1.6)

be the ratio of the number of vanishings of LE(1, χd) sorted according to
whether χd(q) = 1 or −1.

By looking at this ratio, certain elusive and mysterious quantities that
appear in the asymptotics for both the numerator and denominator cancel
each other out and one is left with a precise prediction for its limit. Let

Rq =

(
q + 1− aq
q + 1 + aq

)1/2

. (1.7)

A conjecture from [5] asserts that, for q - Q,

lim
X→∞

Rq(X) = Rq. (1.8)

It is believed that this continues to hold if the set of quadratic twists is re-
stricted to subsets such as d < 0 or d > 0, or to |d| prime, though in the
latter case we must be sure to rule out there being no vanishings at all due to
arithmetic reasons [7].

Numerical evidence for three elliptic curves is presented in [5] and confirms
this prediction. However, even taking X of size roughly 109 (and, in that paper,
d < 0 and |d| prime), the numeric value of the ratio was found in that paper
to agree with the predicted value to about two decimal places. In other cases,
when aq of LE(S) in (1.1) equals 0, the numeric value of Rq(X) compared to
the predicted limit Rq to three or more decimal places.

In this paper we examine secondary terms in the above conjecture applying
new conjectures [4] for the full asymptotics of the moments of LE(1, χd). We
obtain a conjectural formula for the next to leading term in the asymptotics
for Rq(X). It is of size O(1/ log(X)) and explains the slow convergence to the
limit Rq. We also explain in Section 3 the tighter fit when aq = 0.

While the main term, Rq, in the above conjecture is robust and does not
depend heavily on the set of d’s considered, the secondary terms are more
sensitive, for example, to the residue classes of d modulo the primes that
divide Q. Therefore, for simplicity we focus on the following dense collection
of fundamental discriminants d. Assume that Q is squarefree and let

S−(X) = S−E (X) = {−X 6 d < 0;χd(p) = −ap for all p | Q} (1.9)
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For curves of prime conductor Q we also consider the set of fundamental dis-
criminants

S+(X) = S+
E (X) = {0 < d 6 X;χd(Q) = aQ}. (1.10)

These sets of discriminants are also chosen because they allow us to efficiently
compute LE(1, χd) using a relationship to the coefficients of certain modular
forms of weight 3/2 that has been worked out explicitly for many examples by
Tornaria and Rodiguez-Villegas [9] (see [6] for more details). The sets S±(X)
restrict d according to certain residue classes mod Q in the case that Q is odd
and squarefree, and 4Q in the case that Q is even and squarefree.

2 Moments of LE(1, χd)

Let

M±
E (X, k) =

1

|S±(X)|
∑

d∈S±(X)

LE(1, χd)
k. (2.1)

be the kth moment of LE(1, χd).
The conjecture of Conrey-Farmer-Keating-Rubinstein-Snaith [4, 4.4] says

here that, for k > 1, k ∈ Z,

M±
E (X, k) =

1

X

∫ X

0

Υ±k (log(t)) dt+O(X−
1
2

+ε) (2.2)

as X → ∞, where Υk is the polynomial of degree k(k − 1)/2 given by the
k-fold residue

Υ±k (x) =
(−1)k(k−1)/22k

k!

1

(2πi)k
(2.3)

×
∮
· · ·
∮
F±k (z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2

∏k
j=1 z

2k−1
j

ex
Pk
j=1 zjdz1 . . . dzk,

where the contours above enclose the poles at zj = 0,

F±k (z1, . . . , zk) = A±k (z1, . . . , zk)
k∏

j=1

(
Γ(1 + zj)

Γ(1− zj)

(
Q

4π2

)zj)1
2 ∏

16i<j6k
ζ(1+zi+zj),

(2.4)
and ∆ is the Vandermonde. The factor A±k , which depends on E, is the Euler

product which is absolutely convergent for
∑k

j=1 |zj| < 1/2,

A±k (z1, . . . , zk) =
∏

p

F±k,p(z1, . . . , zk)
∏

1≤i<j≤k

(
1− 1

p1+zi+zj

)
(2.5)

with, for p - Q,

F±k,p =

(
1 +

1

p

)−1
(

1

p
+

1

2

(
k∏

j=1

Lp
(

1

p1+zj

)
+

k∏

j=1

Lp
( −1

p1+zj

)))
. (2.6)
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and, for p | Q,

F±k,p =
k∏

j=1

Lp
( ±ap
p1+zj

)
. (2.7)

Because we are limiting ourselves to Q squarefree (Q prime in the S+ case),
we have ap = ±1 when p | Q and so

F±k,p =

{∏k
j=1(1 + p−1−zj)−1 in the S− case, for p | Q∏k
j=1(1− p−1−zj)−1 in the S+ case, for p = Q.

(2.8)

The r.h.s. of (2.2) is [4] asymptotically, as X →∞,

M±
E (X, k) ∼ A±(k)MO(blogXc, k) (2.9)

where

A±(k) = (2.10)
∏

p-Q

(
1− p−1

)k(k−1)/2
(

p

p+ 1

)(
1

p
+

1

2

(
Lp(1/p)k + Lp(−1/p)k

))

×
∏

p|Q

(
1− p−1

)k(k−1)/2 Lp(±ap/p)k

with

MO(N, k) = 22Nk

N∏

j=1

Γ(N + j − 1)Γ(k + j − 1/2)

Γ(j − 1/2)Γ(k + j +N − 1)
. (2.11)

The leading asymptotics given above for the moments of LE(1, χd) was first
made in [8] and [2], though the arithmetic factor was off for primes dividing
Q. One nice thing about (2.9) is that it makes sense for complex values of k
and in [8] was conjectured to hold for <k > −1/2.

In [5] it is shown how the conjectured asymptotics for moments can be
used to obtain information concerning the distribution of values of LE(1, χd).
That paper discusses the importance of the first pole of the r.h.s. of (2.11) at
k = −1/2 in analyzing the number of vanishings of LE(1, χd).

3 Vanishings of LE(1, χd) in progressions

We fix a prime q - Q and restrict d further according to residue classes mod q
as follows. For λ = ±1 we set

S±(X; q, λ) = {d ∈ S±(X);χd(q) = λ} (3.1)

Let

R±q (X) =

∑
d∈S±(X;q,1)
LE(1,χd)=0

1
∑

d∈S±(X;q,−1)
LE(1,χd)=0

1
(3.2)
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denote the number of ratio of the number of vanishings of LE(1, χd), with
d ∈ S±, sorted according to residue classes mod q.

To study this ratio we need to look at the moments:

M±
E (X, k; q, λ) =

1

|S±(X; q, λ)|
∑

d∈S±(X;q,λ)

LE(1, χd)
k. (3.3)

The conjecture in [4] then gives

M±
E (X, k; q, λ) =

1

X

∫ X

0

Υ±k,q,λ (log(t)) dt+O(X−
1
2

+ε) (3.4)

where Υ±k,q,λ(x) is given by the same formula as in (2.3) but with a slight but

important modification: the local factor corresponding to the prime q, F ±k,q,
gets replaced by

F±k,q,λ =
k∏

j=1

(1− λaqq−1−zj + q−1−2zj)−1. (3.5)

Similarly, in (2.10), the local factor
(

q

q + 1

)(
1

q
+

1

2

(
Lq(1/q)k + Lq(−1/q)k

))
(3.6)

at the prime q gets replaced by

Lq(λ/q)
k = (1− λaqq−1 + q−1)−k. (3.7)

From this we immediately surmise several things. First, R±q (X) which is con-
jectured to be, asymptotically, equal to the ratio of the residues of the two
moments (3.4), corresponding to λ = 1 and −1, at the pole k = −1/2 should
thus equal, up to leading order,

(
q + 1− aq
q + 1 + aq

)1/2

. (3.8)

Second, when aq = 0, the complete asymptotic expansion for both moments
are identical up to the conjectured error of size O(X−1/2+ε). The reason for
this is that, in (3.5), if aq = 0, there is no dependence on λ. Indulging in
conjectural bravado, we predict that when aq = 0

R±q (X) = 1 +O(X−1/2+ε) (3.9)

and similarly for Rq(X) in (1.6). This fits well with our numeric data. See
section 6 and also Table 1 in [5] .

Third, from this formula for the moments we are able to work out, in prin-
ciple, arbitrarily many terms in the asymptotic expansion of R±q (X). Below,
we describe the next to leading term in detail. It is of size O(1/ log(X)). The
lower terms in the asymptotics of R±q (X) do depend on whether we are looking
at S+(X) as opposed to S−(X). This arises from the fact that the local factors
F±k,p for p | Q in equation (2.8) depend on whether we are looking at S+ or S−.
While this does not affect the main term Rq, it does show up in the secondary
terms.
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4 Evaluating the first two terms of M±
E (X, k; q, λ)

To evaluate the residue that defines Υ±k,q,λ we need to examine the multi-
ple Laurent series about zj = 0 of the corresponding integrand. In the nu-

merator, we must evaluate the coefficient of
∏k

j=1 z
2k−2
j of degree 2k(k − 1).

Now ∆(z2
1 , . . . , z

2
k)

2 is a homogeneous polynomial consisting of terms of degree
4
(
k
2

)
= 2k(k − 1). However, the poles of

∏
16i<j6k ζ(1 + zi + zj) cancel

(
k
2

)

factors of the Vandermonde. Therefore, in computing the residue, we only

need to take terms from the series for ex
Pk
j=1 zj up to degree

(
k
2

)
. From this we

see that Υ±k,q,λ(x) is a polynomial in x of degree
(
k
2

)
.

To obtain the leading two terms of Υ±k,q,λ(x), i.e. those of degree
(
k
2

)
and(

k
2

)
− 1 in x, we need to evaluate the constant and linear terms in the multiple

Maclaurin series of the function

h±k (z; q, λ) = A±k (z1, . . . , zk; q, λ)
k∏

j=1

(
Γ(1 + zj)

Γ(1− zj)

(
Q

4π2

)zj)1
2

(4.1)

×
∏

16i<j6k
ζ(1 + zi + zj)(zi + zj).

Here A±k (z1, . . . , zk; q, λ) is the same as the function A±k (z1, . . . , zk) but with
the local factor F±k,q replaced by F±k,q,λ.

For example, the term involving xk(k−1)/2 of Υ±k,q,λ(x) is equal to

h±k (0; q, λ)
(−1)k(k−1)/22k

k!

1

(2πi)k
(4.2)

×
∮
· · ·
∮

∆(z2
1 , . . . , z

2
k)

2

∏k
j=1 z

2k−1
j

ex
Pk
j=1 zj

∏
16i<j6k(zi + zj)

dz1 . . . dzk.

It is shown in [3] that the above equals

h±k (0; q, λ)gk(O
+)xk(k−1)/2 (4.3)

where

gk(O
+) = 2k(k+1)/2

k−1∏

j=1

j!

2j!
. (4.4)

We also have
h±k (0; q, λ) = A±k (0, . . . , 0; q, λ). (4.5)

To compute the leading two terms of the moments we prefer to write

h±k (z; q, λ) = exp(log h±k (z; q, λ)) (4.6)

and evaluate the constant and linear terms of

log h±k (z; q, λ) = α±k (q, λ) + β±k (q, λ)
∑

zj + . . . . (4.7)
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Notice that the linear terms all share the same coefficient because h±k (z; q, λ)
is symmetric in the zj’s.

The constant term can be pulled out of the integral as eα
±
k (q,λ) = h±k (0; q, λ).

The linear terms can be absorbed into the exp(x
∑k

j=1 zj). Dropping the terms

of degree two or higher in log h±k (z; q, λ) we can evaluate the residue using (4.3):

h±k (0; q, λ)gk(O
+)(x+ β±k (q, λ))k(k−1)/2 (4.8)

and thus find that

Υ±k,q,λ(x) = h±k (0; q, λ)gk(O
+)(x

k(k−1)
2 +

k(k − 1)

2
β±k (q, λ)x

k(k−1)
2 −1 + . . .). (4.9)

Inserting (4.9) into (3.4) and integrating, we obtain

M±
E (X, k; q, λ) =

h±k (0; q, λ)gk(O
+)

X
(4.10)

×
∫ X

0

(
log(t)

k(k−1)
2 +

k(k − 1)β±k (q, λ)

2
log(t)

k(k−1)
2 −1

)
dt

+O(log(X)
k(k−1)

2 −2)

and hence

M±
E (X, k; q, λ) = h±k (0; q, λ)gk(O

+) log(X)
k(k−1)

2 (4.11)

×
(

1 +
k(k − 1)

2 log(X)
(β±k (q, λ)− 1)

)
+O(log(X)

k(k−1)
2 −2).

Therefore, the remaining work is to compute above the coefficient β±k (q, λ).
To do so we evaluate individually the linear terms in the Maclaurin expansions
of:

1

2
log

k∏

j=1

(
Γ(1 + zj)

Γ(1− zj)

(
Q

4π2

)zj)
, (4.12)

log
∏

16i<j6k
ζ(1 + zi + zj)(zi + zj), (4.13)

and
logA±k (z1, . . . , zk; q, λ). (4.14)

First, log Γ(1 + z) = −γz + π2

12
z2 + . . . hence

1

2
log

(
Γ(1 + z)

Γ(1− z)

(
Q

4π2

)z)
= (−γ + log(Q1/2/(2π)))z + . . . (4.15)

and so (4.12) equals

(−γ + log(Q1/2/(2π)))
∑

zj + . . . . (4.16)
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Next,
ζ(1 + zi + zj)(zi + zj) = 1 + γ(zi + zj) + . . . (4.17)

so
∏

16i<j6k
ζ(1 + zi + zj)(zi + zj) = 1 + γ

∑

16i<j6k
(zi + zj) + . . .

= 1 + (k − 1)γ
∑

zj + . . . (4.18)

Therefore, (4.13) equals

(k − 1)γ
∑

zj + . . . . (4.19)

We now turn to (4.14). The function A±k (z1, . . . , zk; q, λ) is given by (2.5)
except that the local factor at p = q, namely F±k,q, gets replaced by (3.5). To
find the coefficient of

∑
zj in the Maclaurin series for

∏

1≤i<j≤k

(
1− 1

p1+zi+zj

)
(4.20)

we can, because the above is symmetric in the zj’s, differentiate with respect
to z1 and set all zj equal to 0. We thus find that the coefficient of

∑
zj equals

(k − 1) log p

p− 1
. (4.21)

Next we consider the contribution from the local factor when p = q:

logF±k,q,λ = −
k∑

j=1

log(1− λaqq−1−zj + q−1−2zj). (4.22)

Differentiating w.r.t. z1 and setting all zj = 0 we find that the coefficient of∑
zj in the Maclaurin series for logF±k,q,λ equals

log q(λaq − 2)

λaq − q − 1
. (4.23)

Finally, we consider the local factor when p 6= q. If p | Q, we have, on
taking the logarithm of (2.8), differentiating w.r.t. z1, setting all zj = 0, that
the coefficient of

∑
zj in the series for logF±k,p equals

{
log(p)/(1 + p) in the S− case

log(p)/(1− p) in the S+ case.
(4.24)

If p - Q, taking the logarithm of (2.6), differentiating w.r.t. z1, and letting
zj = 0, we get the coefficient of

∑
zj equal to

log(p)

(
(2− ap)f1(p)−k−1 + (2 + ap)f2(p)−k−1

2 + p (f1(p)−k + f2(p)−k)

)
(4.25)
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where

f1(p) = 1− ap/p+ 1/p

f2(p) = 1 + ap/p+ 1/p. (4.26)

Hence, adding all the coefficients of
∑
zj we find that β±k (q, λ) in (4.7), and

hence in (4.9), equals

(k − 2)γ + log(Q1/2/(2π)) +
∑

p

βk(p) (4.27)

where

βk(p) =
(k − 1) log p

p− 1
+





log(q)(λaq−2)

λaq−q−1
if p = q

log(p)

(
(2−ap)f1(p)−k−1+(2+ap)f2(p)−k−1

2+p(f1(p)−k+f2(p)−k)

)
if p 6= q, p - Q

log(p)/(1 + p) if p | Q, in the S− case

log(p)/(1− p) if p | Q, in the S+ case.

(4.28)
Notice that the only dependence in β±k (q, λ) on q is in the term

βk(q) =
(k − 1) log q

q − 1
+

log(q)(λaq − 2)

λaq − q − 1
. (4.29)

5 Conjecture for the first two terms in R±q (X)

Dividing M±
E (X, k; q, 1) by M±

E (X, k; q,−1), using equation (4.11)

M±
E (X, k; q, 1)

M±
E (X, k; q,−1)

=
h±k (0; q, 1)

h±k (0; q,−1)

(
1 + k(k−1)

2 log(X)
(β±k (q, 1)− 1)

)

(
1 + k(k−1)

2 log(X)
(β±k (q,−1)− 1)

) +O(log(X)−2).

(5.1)

The first factor
h±k (0;q,1)

h±k (0;q,−1)
equals

(
q + 1− aq
q + 1 + aq

)−k
. (5.2)

Interpolating to k = −1/2 gives our conjecture:

Conjecture 1. For q - Q

R±q (X) = Rq

1 + 3
8 log(X)

(β±− 1
2
(q, 1)− 1)

1 + 3
8 log(X)

(β±− 1
2
(q,−1)− 1)

+O(log(X)−2) (5.3)

where β±− 1
2
(q, λ) is given explicitly by equation (4.27). The implied constant in

the remainder term depends on E and q, and thus also on aq.
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6 Numerical Data

We verify the conjecture described above for over two thousand elliptic curves
and the sets S±E (X), with X = 108. Altogether we have 2398 datasets. The
curves in question and the method for computing LE(1, χd) are detailed in [6].
Tables of L-values can be obtained from [10].

We first depict in Figure 6.1 the distribution of the remainder in compar-
ing R±q (X) to the conjectured first and second order approximations. More
precisely, for our 2398 datasets, we examine the distribution of values of

R±q (X)−Rq (6.1)

and of

R±q (X)−Rq

1 + 3
8 log(X)

(β±− 1
2
(q, 1)− 1)

1 + 3
8 log(X)

(β±− 1
2
(q,−1)− 1)

(6.2)

with X = 108, q 6 3571. We break up the horizontal axis into small bins of size
.0002 and count how often the values fall within a given bin. The difference
in (6.2) has smaller variance reflecting an overall better fit of the second order
approximation compared with the first. These distributions are not Gaussian.
There are yet further lower terms and these are given by complicated sums
involving the Dirichlet coefficients of LE(s), and q.

In the first plot of Figure 6.2 we depict, for one hundred of our datasets,
the raw data for the values given by equation (6.1). The horizontal axis is q.
For each q on the horizontal axis there are 100 points corresponding to the 100
values, one for each dataset, of R±q (X)−Rq, with X = 108. We see the values
fluctuating about zero, most of the time agreeing to within about .02. The
convergence in X is predicted from the secondary term to be logarithmically
slow and one gets a better fit by including the second order term.

This is depicted in the second plot of Figure 6.2 which shows the difference
given in (6.2). again with X = 108, and the same one hundred elliptic curves
E. We see an improvement to the first plot which uses just the main term. We
only depict data for 100 datasets in these plots since otherwise there would be
too many data points leading to a thick black mess.

Finally, a sequence of plots shows the dependence of the remainder term in
the first and second order approximations on q and aq. Given an integer n, we
display, in Figure 6.3 q v.s. R±q (108)−Rq for the subset of our elliptic curves sat-
isfying aq = n. For each of n = −20,−9,−6,−4,−3,−2,−1, 0, 1, 2, 3, 4, 6, 9, 20
there is one plot. Figure 6.4 does the same but for the values given by equa-
tion (6.2).

We notice several things. Overall, the plots in the Figure 6.4 are more
symmetric about the horizontal axis reflecting a tighter fit by including the
second order term. For smaller q however, incorporating the second order
term leads to a correction that tends to overshoot. Compare for example
the fourth plot in Figures 6.3 and 6.4. Presumably, the third and further
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Figure 6.1: Distribution first approximation v.s. second approximation for
ratio of vanishings
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Figure 6.2: A plot for one hundred datasets of R±q (108)−Rq, top plot, and of
(6.2), bottom plot, for 2 6 q 6 3571.
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order terms, while of size O(log(X)−2) can have relatively large constants for
smaller q requiring one to take X larger than 108 to see an improvement from
the second order term.

This is also reflected in Tables 1– 2 which lists for two elliptic curves and
the sets S+(108) and S−(108) the numeric values of (6.1) and (6.2) for q 6 179.
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Figure 6.3: Left to right, top to bottom: n =
−20,−9,−6,−4,−3,−2,−1, 0, 1, 2, 3, 4, 6, 9, 20. Values of R±q (X) − Rq,
with X = 108, 2 6 q < 500, for the subset of our elliptic curves satisfying
aq = n. The blank white area on the left of the plots for larger n reflects
Hasse’s theorem that |aq| < 2q1/2 which restricts how small q can be given
aq = n.
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Figure 6.4: Left to right, top to bottom: n =
−20,−9,−6,−4,−3,−2,−1, 0, 1, 2, 3, 4, 6, 9, 20 Values of (6.2), with X = 108,
2 6 q < 500, for the subset of our elliptic curves satisfying aq = n.
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q aq (6.1), R− case (6.2), R− case (6.1), R+ case (6.2), R+ case

2 -2 -0.0770803072 -0.1058493733 -0.0586746787 -0.0877402111
3 -1 -0.0226715635 -0.0314020531 -0.0112745015 -0.0200944948
5 1 0.0039386614 0.0110670332 0.0036670414 0.0108679937
7 -2 -0.0086677613 -0.0320476479 0.0122162834 -0.0114052128
13 4 -0.0117312471 0.0114581936 -0.0109800729 0.0124435613
17 -2 0.0068671146 -0.0078374991 0.0156420190 0.0007858160
19 0 0.0018786796 0.0018786796 0.0017548761 0.0017548761
23 -1 0.0065085545 0.0007253864 0.0087254527 0.0028829043
29 0 0.0015867409 0.0015867409 0.0024574134 0.0024574134
31 7 -0.0203976628 0.0065021478 -0.0212844047 0.0058867043
37 3 -0.0076213530 0.0038881303 -0.0081586993 0.0034679279
41 -8 0.0293718254 -0.0104233512 0.0370003139 -0.0032097869
43 -6 0.0200767559 -0.0066399665 0.0230632720 -0.0039304770
47 8 -0.0166158276 0.0077120067 -0.0181946828 0.0063789626
53 -6 0.0175200151 -0.0048911726 0.0194053316 -0.0032378110
59 5 -0.0095451504 0.0043844494 -0.0127090647 0.0013621363
61 12 -0.0229944549 0.0068341556 -0.0279181705 0.0022108579
67 -7 0.0114509369 -0.0104875891 0.0227073168 0.0005417642
71 -3 0.0078736247 -0.0004772247 0.0051206275 -0.0033160932
73 4 -0.0037492048 0.0060879152 -0.0119406010 -0.0020032563
79 -10 0.0300180540 0.0013488112 0.0296738495 0.0007070253
83 -6 0.0142507227 -0.0012053860 0.0124985709 -0.0031170117
89 15 -0.0230738419 0.0057929377 -0.0246777538 0.0044799769
97 -7 0.0105905604 -0.0054712607 0.0154867447 -0.0007408496
101 2 -0.0037100582 0.0002953972 -0.0044847165 -0.0004383257
103 -16 0.0324024693 -0.0068711726 0.0357260869 -0.0039571170
107 18 -0.0228240764 0.0073200274 -0.0245602341 0.0058874808
109 10 -0.0097574184 0.0078543625 -0.0133419792 0.0044484844
113 9 -0.0120886539 0.0035056429 -0.0113667336 0.0043859550
127 8 -0.0093873089 0.0034881040 -0.0081483592 0.0048580252
131 -18 0.0320681832 -0.0038139100 0.0371594888 0.0009037228
137 -7 0.0117897817 -0.0002445226 0.0086451554 -0.0035131214
139 10 -0.0148514126 0.0000259176 -0.0112784046 0.0037500975
149 -10 0.0140952751 -0.0023344544 0.0172405748 0.0006412396
151 2 -0.0041170706 -0.0011557351 -0.0070016068 -0.0040099902
157 -7 0.0108322334 0.0000925632 0.0097641977 -0.0010860401
163 4 -0.0014750980 0.0040361356 -0.0066512858 -0.0010837710
167 -12 0.0171132732 -0.0010302790 0.0222297420 0.0038987403
173 -6 0.0054181738 -0.0030119338 0.0036566390 -0.0048601622
179 -15 0.0177416502 -0.0040658274 0.0261766468 0.0041434818

Table 1: The values of R±q (108), for the elliptic curve 11A of conductor 11
given by y2 + y = x3 − x2 − 10x− 20, compared to the conjectured first order
approximation (6.1) and second order approximation (6.2).
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q aq (6.1), R− case (6.2), R− case (6.1), R+ case (6.2), R+ case

2 0 0.0001964177 0.0001964177 0.0025336244 0.0025336244
3 0 -0.0007380207 -0.0007380207 -0.0025236647 -0.0025236647
5 4 -0.0128879806 0.0109510354 -0.0166316058 0.0072258354
7 0 -0.0048614428 -0.0048614428 -0.0014203548 -0.0014203548
11 3 -0.0076239866 0.0095824910 -0.0101221542 0.0070977143
13 6 -0.0212338218 0.0089386380 -0.0276990384 0.0024967032
17 -1 0.0033655021 -0.0029005302 0.0086797465 0.0024087738
19 -1 0.0055745934 -0.0003223680 0.0020465484 -0.0038550619
23 -2 0.0074744917 -0.0036255406 0.0079256468 -0.0031831583
29 0 0.0004190042 0.0004190042 -0.0010879108 -0.0010879108
31 4 -0.0108662407 0.0041956843 -0.0096223973 0.0054512748
37 3 -0.0067227670 0.0037940655 -0.0162107316 -0.0056856756
41 5 -0.0109118090 0.0049138186 -0.0164777387 -0.0006397725
43 -10 0.0406071465 -0.0060036473 0.0409949651 -0.0056532348
47 -6 0.0284021024 0.0057897746 0.0209827487 -0.0016475471
53 -10 0.0361234610 -0.0017568821 0.0423409405 0.0044303004
59 4 -0.0054935724 0.0048495607 -0.0148985734 -0.0045473511
61 -8 0.0227634479 -0.0025651538 0.0253866588 0.0000379053
67 -8 0.0217284008 -0.0016029354 0.0249365465 0.0015866634
71 -15 0.0398795640 -0.0080932079 0.0531538377 0.0051425339
73 2 -0.0003657281 0.0042519609 -0.0019954011 0.0026259102
79 -13 0.0270702549 -0.0087950276 0.0328555729 -0.0030383756
83 5 -0.0120289758 -0.0018576129 -0.0140337206 -0.0038544019
89 9 -0.0117002661 0.0050406278 -0.0159501141 0.0008038275
97 7 -0.0121449601 0.0003884458 -0.0126491435 -0.0001059465
101 10 -0.0162655200 0.0006799944 -0.0166873803 0.0002713400
103 11 -0.0154514081 0.0027879315 -0.0155096044 0.0027439391
107 -15 0.0298791131 -0.0020491232 0.0346054275 0.0026517125
109 -7 0.0131301691 -0.0001660211 0.0138662913 0.0005595788
113 14 -0.0219346950 -0.0006197951 -0.0199798581 0.0013516122
127 17 -0.0231978866 0.0002623636 -0.0235951007 -0.0001166344
131 -6 0.0075864820 -0.0020988314 0.0132703492 0.0035773840
137 -6 0.0049307893 -0.0044030816 0.0085067787 -0.0008344650
139 14 -0.0179638452 0.0005718014 -0.0220919830 -0.0035419036
149 19 -0.0184587534 0.0048182811 -0.0206858659 0.0026092450
151 -14 0.0157624561 -0.0057016072 0.0217272592 0.0002461455
157 -14 0.0258394912 0.0051129620 0.0236949594 0.0029519710
163 -8 0.0115026664 0.0005637031 0.0044174198 -0.0065301910
167 21 -0.0224356707 0.0011192167 -0.0284090909 -0.0048359139
173 -6 0.0056158047 -0.0020804090 0.0044893748 -0.0032129134
179 0 0.0018844544 0.0018844544 -0.0007004350 -0.0007004350

Table 2: The values of R±q (108), for the elliptic curve 307A of conductor 307
given by y2 + y = x3 − x− 9, compared to the conjectured first order approx-
imation (6.1) and second order approximation (6.2).
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Fudge Factors in the Birch and
Swinnerton-Dyer Conjecture

Karl Rubin

The aim of this note is to describe how the “fudge factors” in the Birch and
Swinnerton-Dyer conjecture vary in a family of quadratic twists (see Proposi-
tion 5, which follows directly from Tate’s algorithm [T]). We illustrate with
two examples.

Definition 1. If E is an elliptic curve over Q and p is a prime, the fudge
factor (or Tamagawa factor) cp(E) is defined by

cp(E) = [E(Qp) : E0(Qp)]

where E0(Qp) is the subgroup of E(Qp) consisting of those points whose reduc-
tion modulo p (on a minimal model of E) is nonsingular.

The fundamental method for computing the fudge factors is Tate’s al-
gorithm. This algorithm, originally described in a 1965 letter to Cassels,
was published in [T] and essentially reproduced in §IV.9 of [S]. Stan-
dard number theoretic computer packages, such as PARI/GP (available at
http://pari.math.u-bordeaux.fr), will compute these factors very effi-
ciently.

Let ∆(E) denote the discriminant of a minimal model of E.

Proposition 2. Suppose E is an elliptic curve over Q.

(i) If E has good reduction at p, then cp(E) = 1.

(ii) If E has split multiplicative reduction at p, then cp(E) = ordp(∆(E)),
i.e., pcp(E) is the highest power of p dividing ∆(E).

(iii) If E has nonsplit multiplicative reduction at p, then cp(E) ≤ 2 and
cp(E) ≡ ordp(∆(E)) (mod 2).

(iv) If E has additive reduction at p, then cp(E) ≤ 4.

Proof These are cases 1, 2a, 2b, and 3 through 10, respectively, of Tate’s
algorithm [T]. 2

Fix an elliptic curve E and a model of E of the form

y2 = f(x)

1Supported by NSF grant DMS-0140378.
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with a monic cubic polynomial f(x) ∈ Z[x], and let ∆ denote the discriminant
of this model. We may assume that the model is minimal at all primes p > 2,
but this is not necessary for what follows.

Definition 3. The quadratic twist of E by a nonzero rational number d is

Ed : y2 = d3f(x/d).

We will write simply cp(d) for cp(Ed). The purpose of this note is to describe
how cp(d), and

∏
p cp(d), vary with d.

Lemma 4. Suppose d, d′ ∈ Q×.

(i) If d/d′ is a square in Q, then Ed is isomorphic to Ed′.

(ii) If p is a prime and d/d′ is a square in Qp, then cp(d) = cp(d
′).

Proof If d′ = dr2, then the map (x, y) 7→ (r2x, r3y) is an isomorphism from
Ed to Ed′ . If r ∈ Q×, this proves (i). If r ∈ Q×p , this isomorphism identifies
Ed(Qp) with Ed′(Qp) and by the definition of cp(d) we get cp(d) = cp(d

′). 2

By Lemma 4(i), every quadratic twist Ed of E is a twist by some (unique)
squarefree integer. From now on we will assume that d is a squarefree integer.

Proposition 5. Suppose p is a prime not dividing 2∆. If p - d then cp(d) = 1.
If p | d, then

cp(d) = 1 + #{roots of f(x) ≡ 0 (mod p) in Z/pZ} = 1, 2, or 4.

Proof If p - 2∆d then Ed has good reduction at p, so cp(d) = 1. If p | d but
p - 2∆ then we are in case 6 of Tate’s algorithm [T]. 2

Note that for every p not dividing 2∆, the number of roots of f(x) modulo
p is at least as large as the number of roots of f(x) in Q. Thus if p | d and
p - 2∆, then cp(d) ≥ #E(Q)[2].

If p | 2∆ the situation is more complicated. However, for those primes, to
determine cp(d) for every d, Lemma 4(ii) shows that it is enough to compute
cp(d) (using Tate’s algorithm) for d in a set of representatives of Q×p /(Q

×
p )2.

Note that Q×p /(Q
×
p )2 has order 4 if p > 2, and order 8 if p = 2.

Example 6. E : y2 = x3 − x
We have ∆ = 64, and x3− x factors into linear factors over Q, so Proposi-

tion 5 shows that for p > 2 we have

cp(d) =

{
1 if p - d,
4 if p | d. (1.1)

Tate’s algorithm (cases 4 and 7.2, respectively) gives

c2(d) =

{
2 if 2 - d,
4 if 2 | d. (1.2)
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(Alternatively, we can use PARI/GP to compute that

c2(1) = c2(3) = c2(−1) = c2(−3) = 2,

c2(2) = c2(6) = c2(−2) = c2(−6) = 4,

and then use Lemma 4(ii) to deduce (1.2).)

Combining (1.1) and (1.2) we conclude that

∏

p

cp(d) =

{
22ω(d)+1 if d is odd,

22ω(d) if d is even,

where ω(d) is the number of prime divisors of d.

Example 7. E : y2 + y = x3 − x2 − 10x− 20

This is the modular curve X0(11), with discriminant −115. We will use the
model (not minimal at 2)

y2 = x3 − 4x2 − 160x− 1264

with discriminant ∆ = −212115. For p 6= 2, 11, Proposition 5 shows that

cp(d) =

{
1 if p - d,
1 + #{roots of x3 − 4x2 − 160x− 1264 mod p} if p | d.

Since x3 − 4x2 − 160x − 1264 is irreducible over Q, cp(d) can be 1, 2, or 4.
More precisely, the Galois group of x3−4x2−160x−1264 over Q is S3, so the
Cebotarev theorem shows that if Dk is the density of the set of primes p such
that x3 − 4x2 − 160x− 1264 has k roots modulo p, then D0 = 1/3, D1 = 1/2,
and D3 = 1/6.

We also compute

d 1 3 −1 −3 2 6 −2 −6
c2(d) 1 1 1 1 1 1 1 1

d 1 −1 11 −11
c11(d) 5 1 4 2

Therefore by Lemma 4(ii), c2(d) = 1 for every d, and

c11(d) =





5 if d is a nonzero square modulo 11,

1 if d is not a square modulo 11,

4 if 11 | d and d
11

is a square modulo 11,

2 if 11 | d and d
11

is not a square modulo 11.
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Rank distribution in a family of cubic
twists

Mark Watkins

Abstract

In 1987, Zagier and Kramarz published a paper in which they pre-
sented evidence that a positive proportion of the even-signed cubic
twists of the elliptic curve X0(27) should have positive rank. We extend
their data, showing that it is more likely that the proportion goes to
zero.

1 Introduction

Let Em be the elliptic curve defined by the equation x3 + y3 = m, which is
isomorphic to y2 = x3−432m2. The case of m = 1 is the modular curve X0(27),
and the cubefree positive m-values give the cubic twists.

These equations have a long history, dating back to Fermat. An early
study was done by Sylvester [Syl] in 1879-80, and another voluminous study
in 1951 by Selmer [Sel]. In between these two, Nagell [N, p.14] proved sundry
results concerning non-solvability in many cases. In the late 1960s, Stephens
[Ste1, Ste2] did numerical experiments with these curves with respect to the
then-new Birch–Swinnerton-Dyer conjecture. Zagier and Kramarz [ZK] did
a large numerical experiment in the 1980s, which led them to suggest that a
positive proportion of the curves have rank 2 or greater. The best results in
this regard appear to be due to Mai [M], who showed that, assuming the Parity
Conjecture, for every ε > 0 at least cεT

2/3−ε of the cubefree even twists up to
T have rank 2. Elkies and Rogers [ER] have recently found that the curve

x3 + y3 = 13293998056584952174157235

has rank at least 11. We shall mainly be concerned with rank 2 cubic twists
and in extending the numerical data of [ZK], showing that the purported
positive proportion does not seem to persist. We also consider the distribution
of the size of the Tate–Shafarevitch groups attached to these curves, comment
on effects stemming from the arithmetic of m, consider similar questions for
quartic twists of X0(32), and discuss random matrix models for these.

We briefly review how to compute the central L-value of Em. The first
consideration is the sign of the functional equation, which was computed by
Birch and Stephens [BS]. This is defined by εm =

∏
p εm(p) where for p 6= 3

we have that εm(p) =
(
p
3

)
if p|m and εm(p) = +1 if p does not divide m. For
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p = 3, we have that εm(3) = +1 if m ≡ 1, 3, 6, 8 (mod 9), and εm(3) = −1
otherwise. Next, there is the conductor Nm =

∏
pNm(p) where for p 6= 3

we have that Nm(p) = p2 if p|m and Nm(p) = 1 otherwise, while for p = 3
we have that Nm(3) = 35 if 3|m, that Nm(3) = 32 if m ≡ ±2 (mod 9), and
Nm(3) = 33 otherwise. There are also Tamagawa numbers and considerations
for the real period Ω; the effects of these are given in the Section 4 (see also
Table 1 of [ZK]).

When εm = +1, the central L-value is given by

L(Em, 1) = 2
∑

n

am(n)

n
e−2πn/

√
Nm ,

where the conductor Nm is defined as above, and the am(n) can be computed
as follows. For primes p 6≡ 1 (mod 3) and primes p|3m, we define am(p) = 0.
Given a prime p ≡ 1 (mod 3), the set

Ap = {a| a ≡ 2 (mod 3), a2 + 3b2 = 4p for some b ∈ Z}

has 3 elements. For such a prime we define a1(p) to be the unique element in
Ap for which 3|b. We then define am(p) uniquely by the conditions am(p) ≡
m(p−1)/3a1(p) (mod p) and am(p) ∈ Ap (this second condition is equivalent to
|am(p)| < 2

√
p for p > 13 and not p ≥ 13 as [ZK] claims). Having defined

am(p) for all primes p, we extend it to prime powers via the Hecke relations,
and then to all positive integers via multiplicativity. In order to approximate
L(Em, 1) well, we need to use about C

√
Nm coefficients for some constant C.

When εm = −1, the series for L′(Em, 1) has the exponential function replaced
by an exponential integral — we did not deal with this case ([ZK] considered it
for m ≤ 20000) since the exponential homomorphism can be computed rapidly
more readily than the exponential integral — for the latter, local power series
would likely be useful. Lieman [L] has shown that the values of L(Em, 1) are
the coefficients of a metaplectic form as was suggested in [ZK, §3.1], but this
does not seem useful for computational purposes. We did not try to use the
conditions given by Rodriguez-Villegas and Zagier [RVZ], and cannot comment
on their computational efficacy.

2 Numerical data

Applying the above method for the cubefree m ≤ 107 with εm = +1, we find
that about 17.7% of the twists have vanishing central L-value. This is to be
compared to 23.3% for the m ≤ 70000, and 20.5% for m ≤ 106. If we take the
best linear fit to a log-log regression, we find that the number of twists up to
x with vanishing central L-value appears to grow like x0.935. Heuristic models
involving the expected size of X as mentioned in [ZK, §3.2] imply that the
growth should be more like x5/6. Stronger models such as those in [CKRS]
imply this should be more like Bx5/6(log x)C for some constants B and C; in
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the last section we make remarks about what random matrix theory predicts
for C.
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Figure 2.1: Number of even vanishing cubic twists of X0(27) compared to a
(dotted) straight line.

There is also the question of arithmetic effects of m. Only 6.1% of the
prime m in the above range m ≤ 107 have vanishing central L-value, while
11.3% of the m with two prime factors do, and 17.1% of the m with three
prime factors. The number grows to 24.5% for four prime factors, and 35.3%
for five prime factors, and is 51.4% for six or more prime factors. However,
each of these percentages is about 20% lower than the comparative value when
considering only the m ≤ 106. So even if we restrict to prime m we expect that
the proportion of twists with vanishing central L-value tends to zero. Note in
this context that 3-descent can tell us much about the rank when we limit
the number of prime factors of m (see [C]). For instance, when m is prime
and Em has even functional equation, we know that m ≡ 1, 2, 5 (mod 9), and
the rank is zero in the latter two cases. Thus the 6.1% of above might be
re-interpreted as 18.3% of the cases where descent considerations do not force
the rank to be zero. Using the results of [N], we could similarly derive such
results when m has two prime factors. Also, one can recall that Elkies (see
[E1]) has proven that the rank is exactly 1 for primes m ≡ 4, 7 (mod 9); here
in fact the conjecture is that the same is true for m ≡ 8 (mod 9). We return
to such considerations below when we discuss random matrix models.

We next make some comments about how often various |X|-values occur.
Zagier and Kramarz found that 26.3% of the even twists for m ≤ 70000 have
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rank 0 and trivial X, while we find the percentage to be 18.8% for m ≤ 106 and
14.1% for m ≤ 107. Indeed, already in [ZK] this percentage was noted to be
diminishing. More interesting might be how often a given prime divides |X|,
under the restriction to rank 0 twists. For instance, 32.4% of the even rank 0
twists with m ≤ 70000 have 3 dividing |X|. This number increases to 40.1%
for m ≤ 106, and is 45.3% for m ≤ 107. The heuristics of Delaunay [De] imply
a number more like 36.1%. There is a strong arithmetic impact from m, as for
prime m the percentage for m ≤ 107 is only 5.8%. However, this last datum
should probably be considered anomalous because of the special rôle that 3
plays for cubic twists.

Similarly, 2 divides |X| about 45.7% of the time for even rank 0 twists with
m ≤ 107, while only 42.1% of the time for m ≤ 106 and 35.5% of the time for
m ≤ 70000. Here Delaunay predicts 58.1%. Here prime m are more likely to
cause 2-divisibility of |X|, with the percentage here for m ≤ 107 being 53.5%.

As [ZK] notes, the expectation is that |X| should be of size m1/3 ≈ N
1/6
m for

these cubic twists, larger than the expected N
1/12
m in the general case. For

5-divisibility of |X|, the percentage increases from 3.6% to 5.9% to 8.0% as
the m-range increases. It seems unlikely that these percentages (for p 6= 3) will
climb all the way to 100%, and without a better guess, one could posit that
they are tending toward the number suggested by the Delaunay heuristic. In
Table 1, the “r > 0” column counts percentages of curves for which the central
L-value vanishes, while the other four columns denote how often a given prime
divides the |X|-value of a nonvanishing twist.

Table 1: Data for cubic twists

r > 0 p = 2 p = 3 p = 5 p = 7
m ≤ 105 22.9 37.3 33.7 3.9 1.2
m ≤ 106 20.5 42.1 40.1 5.9 2.4
m ≤ 107 17.7 45.7 45.3 8.0 3.7

prime m ≤ 107 6.1 53.5 5.8 14.5 8.2
Delaunay 58.3 36.1 20.7 14.5

M. O. Rubinstein pointed out to us that in his data for quadratic twists, the
|X| tend to the Delaunay number more readily upon including all even rank
twists, instead of just the ones of rank 0. Indeed, as we expect that the high
rank twists should form an asymptotically negligible set, there is perhaps no
reason not to include them in our data. Furthermore, additionally restricting
to prime twists also tends to speed convergence toward the number given by
Delaunay. Upon implementing these two ideas, we get numbers of 56.3% for
2-divisibility, 19.7% for 5-divisibility, and 13.8% for 7-divisibility, which are
fairly close to the percentages predicted by Delaunay. For 3-divisibility we
have only 11.6%, as the existence of 3-isogenies for our curves appears to have
a definite impact (Rubinstein reports similar phenomena for quadratic twists).
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One can do a similar experiment with quartic twists of X ι
0(32) : y2 = x3−x

or sextic twists of X0(27). We only looked at the former (where the ι indicates
isogenous). For the computation of the sign of the functional equation in these
cases, see [ST]. Note that [ZK] looked at the quadratic twists of X ι

0(32) given
by y2 = x3 −m2x with m ≡ 1 (mod 16) for m ≤ 500000, and they found that
the percentage of vanishing twists is dropping fairly rapidly, it being 15.2% for
m ≤ 50000 and 10.6% for m ≤ 500000. For the quartic twists of X ι

0(32) we
are looking at y2 = x3 +mx where 4 does not divide m and m is free of fourth
powers. Here we considered positive m ≤ 8000000, of which 24.9% of the even
twists have vanishing central value. This is less than the 27.4% for m ≤ 106,
and 29.8% for m ≤ 105. Similar percentages occur for the negative m.

3 Computational techniques

The computations were carried out on a network of about 10 SPARC machines
(mostly SPARC-V) over a 6-month period at the beginning of 2001. Our bound
of m ≤ 107 was chosen as we were mainly interested in the question of extra
vanishing, and 107 seemed sufficient to answer the question posed by [ZK] on
whether the rate remained constant. With today’s technology, extending the
experiment to m ≤ 108 should be feasible, as should a similar experiment
looking at cubic twists with odd functional equation.

As stated in [ZK], the computation of the am(n) takes time O(log n) if n is
prime and O(1) time otherwise (using the multiplicativity relations, viewing
the values for the primes dividing n as taking negligible time as they are already
computed). We computed the values of a1(p) for p ≤ 109 once-and-for-all
ahead of time, and then read these from disk as needed. Additionally, tricks
such as fast modular exponentiation were used to speed up the computation
of m(p−1)/3 mod p. Similarly, the computing of e−2πn/

√
Nm was faciliated by

the fact that the exponential function is a homomorphism; for a given N , we
computed various powers of e−2π/

√
Nm and then for each n multiplied these

together as needed to get the desired value. For the computation of L(Em, 1),
and the question of how far the infinite sum need be computed, we followed
a method similar to that of [ZK], calculating the |X|-value Sm = T 2

cΩ
L(Em, 1)

where T is the size of the torsion group, c is the global Tamagawa number,
and Ω is the real period (see pages 54–56 of [ZK] or Section 4 for these). We
then stop the calculation when Sm is sufficiently close to an integer (possibly
zero). As a check, we expect all the Sm values to be squares, which indeed
does turn out to be the case.

4 Random matrix models

In this section we make some comments about random matrix theory and the
expected number of even cubic twists of X0(27) which have vanishing central
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L-value. We follow the ideas of [CKRS] and [DFK]. In our case of cubic
twists, we expect, similar to the case in [CKRS], to have symmetry type O+,
that is, orthogonal with positive determinant. This is because the sign of our
functional equation is always +1. Note that [DFK] have unitary symmetry in
their type of cubic twist, due to the fact that the functional equation has an
essentially arbitrary complex number (related to a Gauss sum) appearing in it.

We write E = X0(27) and Ed for the dth cubic twist of E. As given in equa-
tions (20), (22), and (16) of [CKRS], the assumption of O+ symmetry implies
that PE(N, x) = cEN

3/8/
√
x should approximate (for small x) the probabil-

ity density function for values of L(Ed, 1), where N ∼ log d and we integrate∫ X
0
PE(N, x) dx to get an expected probability that L(Ed, 1) is less than X.

The idea is that we know that the actual values of L(Ed, 1) are discretised (due
to the Birch–Swinnerton-Dyer formula), and thus we declare (in a somewhat
arbitrary manner) sufficiently small values of L(Ed, 1) to indicate that in fact
we have L(Ed, 1) = 0. We recall that the BSD conjecture implies we have

L(Ed, 1)

Ωd

=
∏

p|3d
cp ·
|Xd|
|Td|2

where Ωd is the real period of Ed, the cp are Tamagawa numbers, Xd is
the Shafarevitch–Tate group, and Td is the torsion group of Ed. We are thus
thinking of |Xd| (which is a square) as our discretised variable, with everything
else being computable. When d > 2 the torsion group is trivial. For cubefree d
we have that Ωd = Ω1/d

1/3, except when 9|d in which case we have Ωd =
3Ω1/d

1/3. Note that in definition (8) of [CKRS], quadratic twists that are
not relatively prime to the conductor are excluded; we will similarly exclude
twists that are divisible by 3, though one could deal with them via making
appropriate corrections. For the Tamagawa product we have that c3 = 3 when
d ≡ ±1 (mod 9), c3 = 2 when d ≡ ±2 (mod 9), and c3 = 1 otherwise, while
cp = 3 for primes p ≡ 1 (mod 3) and cp = 1 for primes p ≡ 2 (mod 3). Given
this divergent behaviour based upon prime divisibility, as in Conjecture 1 of
[CKRS] we decided to restrict to prime twists, and additionally split the primes
into congruence classes modulo 9. Indeed, it is calculable that the sign of the
functional equation is odd when our twisting prime d is congruent to 4, 7, 8
(mod 9), and by 3-descent we can verify that the rank is zero when d is 2 or
5 (mod 9). Moreover, again by 3-descent, we know that the rank is at most 2
(and the functional equation is even) when d is 1 mod 9. Computing as with
equation (23) in [CKRS] we are led to:

Question 4.1. Let VT be the set of primes d less than T congruent to 1 mod-
ulo 9 with L(Ed, 1) = 0. Is there some constant c 6= 0 such that

∑

d∈VT
1 ∼ cT 5/6(log T )−5/8 as T →∞ ?

Assuming an affirmative answer, our data give a constant of approximately
c = 1/6. The argument is similar for quartic twists of X0(32) or sextic twists
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of X0(27), and we can expect respective asymptotics for prime twists of order
T 7/8(log T )−5/8 and T 11/12(log T )−5/8, and upon restricting to various congru-
ence classes we should get appropriate constants in front of these. Via tech-
niques from prime number theory and considerations from Tamagawa numbers,
one should be able to argue as in [CKRS] to get an asymptotic for all cubefree
twists.

Finally we derive a version of Conjecture 2 of [CKRS] suitable for cubic,
quartic, and sextic twists. For cubic twists, for a given prime p ≡ 1 (mod 3)
there are 3 solutions to a2 + 3b2 = 4p with a ≡ 2 (mod 3), which correspond
to the three possibilities for the Frobenius trace ap. The argument given from
(27)-(31) in [CKRS] does not differ (see below), and so we are led to:

Question 4.2. Let p ≥ 5 be prime, and for 1 ≤ q ≤ p − 1 let F q
p (T ) be the

set of cubefree positive integers d ≡ q (mod p) that are less than T such that
x3 + y3 = d has even functional equation and positive rank. Letting ad(p) be
the pth trace of Frobenius for x3 + y3 = d (where d need not be cubefree), do
we have

lim
T→∞

( ∑

d∈FYp (T )

1

/ ∑

d∈FZp (T )

1

)
=

√
p+ 1− aY (p)

p+ 1− aZ(p)
?

In Tables 2-5 below we list vanishing frequencies in support of an affirmative
answer to the above question; the c-column represents which congruence class
is used. For p = 7, the classes c = 3, 4 have a(p) = 5, while c = 1, 6 have
a(p) = −1 and c = 2, 5 have a(p) = −4. The experimental data from Table 3
here show ratios of [0.100, 0.184, 0.211], while theory predicts [

√
3 :
√

9 :
√

12].
For p = 13 the theory predicts [

√
9 :
√

12 :
√

21]. We also have some data (see
Tables 6-9) for the vanishing frequencies for positive quartic twists of X ι

0(32).
For p = 5 the ratios should be

[√
2 :
√

4 :
√

8 :
√

10
]
; for p = 13 they should be[√

8 :
√

10 :
√

18 :
√

20
]
. We could also make a similar calculation for sextic

twists of X0(27), but did not do so.
The heuristic for Conjecture 2 in [CKRS] is based upon supposed cancel-

lation from a quadratic character, whereas in our cubic twist case the source
of cancellation is perhaps not so transparent. Therefore we go through the
details. We have that

∑

d∈F qp (T )

L(Ed, 1/2)k =
∑

d∈F qp (T )

( ∞∑

n=1

ad(n)

n

)k
=

∑

d∈F qp (T )

∞∑

n=1

bd(n)

n
,

where bm(n) =
∑

n=n1···nk am(n1) · · · am(nk) with the sum being over all ways of
writing n as a product of k positive factors. If we invert the order of summation
in this last expression, the sum over d should typically have much cancellation
since the bd(n) are essentially randomly distributed. This, however, is not the
case for n that are a power of p, as here the value of ad(p

r) is fixed since d
is fixed modulo p. Thus we should get a main contribution in the above by
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restricting to values of n that are powers of p (indeed, if we did this argument
with no congruence restriction we would expect n = 1 to give the main term).
As in (31) of [CKRS] we thus get that

∑

d∈F qp (T )

L(Ed, 1/2)k ∼
∑

d∈F qp (T )

∑

pr

bd(p
r)

pr
=

∑

d∈F qp (T )

(∑

pr

ad(p
r)

pr

)k
=

=

(
p

p+ 1− ad(p)

)k ∑

d∈F qp (T )

1.

We complete our heuristic by first noting that the sets F q
p (T ) have asymptot-

ically equal sizes and then taking k = −1/2 as is suggested by the random
matrix theory of [CKRS]. Note that a similar heuristic can be given for mo-
ments of higher derivatives, but the combinatorics become more difficult due
to the presence of logarithms. In this context, the data of Elkies [E2] distinctly
show a congruence-class phenomenon for rank 3 quadratic twists of X0(32).
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Table 2: p = 5, X0(27)

c #r > 0 #curves

1 140463 838612 0.167
2 140549 838570 0.168
3 140613 838575 0.168
4 140750 838637 0.168

Table 3: p = 7, X0(27)

c #r > 0 #curves

1 109569 595982 0.184
2 125728 595952 0.211
3 59440 595912 0.100
4 58759 595903 0.099
5 125714 595963 0.211
6 110125 595937 0.185

Table 4: p = 11, X0(27)

c #r > 0 #curves

1 64989 378410 0.172
2 65211 378408 0.172
3 65001 378430 0.172
4 65008 378444 0.172
5 64956 378423 0.172
6 65208 378426 0.172
7 65054 378411 0.172
8 64773 378422 0.171
9 65164 378396 0.172
10 65338 378401 0.173

Table 5: p = 13, X0(27)

c #r > 0 #curves

1 44504 320075 0.139
2 52214 320099 0.163
3 51754 320124 0.162
4 67352 320151 0.210
5 43064 320116 0.135
6 68325 320090 0.213
7 68702 320124 0.215
8 43215 320104 0.135
9 67584 320107 0.211
10 51465 320072 0.161
11 51827 320135 0.162
12 44858 320042 0.140

Table 6: p = 5, X0(32)

c #r > 0 #curves

1 156097 749089 0.208
2 104136 749107 0.139
3 236861 749125 0.316
4 215944 749182 0.288

Table 7: p = 7, X0(32)

c #r > 0 #curves

1 128846 538523 0.239
2 128491 538505 0.239
3 128553 538517 0.239
4 128597 538505 0.239
5 128053 538495 0.238
6 128335 538512 0.238

Table 8: p = 11, X0(32)

c #r > 0 #curves

1 82653 341092 0.242
2 82782 341070 0.243
3 82581 341069 0.242
4 82392 341072 0.242
5 82806 341113 0.243
6 82448 341061 0.242
7 82661 341108 0.242
8 82388 341045 0.242
9 82720 341091 0.243
10 82948 341083 0.243

Table 9: p = 13, X0(32)

c #r > 0 #curves

1 85079 287669 0.296
2 60843 287670 0.212
3 85408 287673 0.297
4 53551 287693 0.186
5 60788 287689 0.211
6 60926 287684 0.212
7 81716 287656 0.284
8 81500 287704 0.283
9 85480 287661 0.297
10 53852 287654 0.187
11 81525 287683 0.283
12 53688 287668 0.187



Vanishing of L-functions of elliptic
curves over number fields

Chantal David, Jack Fearnley and Hershy Kisilevsky ∗

Abstract

Let E be an elliptic curve over Q, with L-function LE(s). For any
primitive Dirichlet character χ, let LE(s, χ) be the L-function of E
twisted by χ. In this paper, we use random matrix theory to study
vanishing of the twisted L-functions LE(s, χ) at the central value s = 1.
In particular, random matrix theory predicts that there are infinitely
many characters of order 3 and 5 such that LE(1, χ) = 0, but that for
any fixed prime k > 7, there are only finitely many character of order
k such that LE(1, χ) vanishes. With the Birch and Swinnerton-Dyer
Conjecture, those conjectures can be restated to predict the number of
cyclic extensions K/Q of prime degree such that E acquires new rank
over K.

1 Introduction

Let E be an elliptic curve defined over Q with conductor NE. For any num-
ber field K/Q, let E(K) be the group of points of E defined over K. By
the Mordell-Weil Theorem, E(K) is a finitely generated abelian group. Let
LE(s,K) be the L-function of E over the field K.

Conjecture 1.1 (Birch and Swinnerton-Dyer conjecture over number
fields). LE(s,K) has analytic continuation to the whole complex plane, and

ords=1LE(s,K) = rK(E)

where rK(E) is the rank of E(K).

In this paper, we fix E an elliptic curve over Q, and we study how the
rank varies over abelian fields K/Q of fixed prime degree. For example, are
there infinitely many such number fields where E acquires new rank over K
(i.e. rK(E) > rQ(E))? With the Birch and Swinnerton-Dyer conjecture, one
can rephrase the question in terms of vanishing of the L-function LE(s,K) at
s = 1. Let K be an abelian extension of Q with Galois group G and conductor

∗The first and third authors are partially supported by grants from NSERC and FCAR
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m. Let Ĝ be the group of characters of G which can be identified with a set
of Dirichlet characters

χ : (Z/mZ)∗ → C∗.

Let
LE(s) = LE(s,Q) =

∑

n>1

an
ns

be the L-function of E over Q. For each primitive Dirichlet character χ, let

LE(s, χ) =
∑

n>1

χ(n) an
ns

be the L-function of E over Q twisted by the character χ. By the work of
[16, 15, 1], LE(s) and LE(s, χ) have analytic continuation to the whole complex
plane. It also follows from properties of number fields that

LE(s,K) =
∏

χ∈Ĝ

LE(s, χ), (1.1)

and the vanishing of the twisted L-functions LE(s, χ) at s = 1 is equivalent, via
the Birch and Swinnerton-Dyer conjecture, to the existence of rational points
of infinite order on E(K).

In this paper, we use random matrix theory to study the vanishing of the
twisted L-functions LE(s, χ) at s = 1. It has been known since the work
of Montgomery [13] that certain statistics on probability spaces of random
matrices (such as pair correlation between the eigenangles of the matrices) are
similar to the same statistics on the zeroes of the Riemann zeta function. This
intuition is supported by the extensive computations of Odlyzko [14] on the
critical zeroes of the Riemann zeta function.

This was explored further in the work of Katz and Sarnak [8, 9], who
extend the analogy between other probability spaces of matrices, and families
of L-functions. Katz and Sarnak also studied the case of function fields, where
they can actually prove some of those mysterious connections between random
matrices and families of L-functions.

In order to study different statistics of number theoretic objects, Keating
and Snaith [10, 11] introduced a new random variable on spaces of random
matrices, the characteristic polynomial of the matrix evaluated at a given
point. They computed the probability distribution of this new variable, which
led to striking conjectures for the asymptotic behavior of the moments of
the Riemann zeta function on the critical line. The ideas of Keating and
Snaith have been applied to study vanishing of L-functions in families [3, 5, 17].
Families of quadratic twists are studied in [3], where a conjectural asymptotic
for the number of quadratic twists with even non-zero rank is presented. This
refines a conjecture of Goldfeld [6] which predicts that quadratic twists with
rank greater than one have density zero. In [5], the authors used the ideas
of Keating and Snaith to obtain a conjectural asymptotic for the number of
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cubic Dirichlet characters χ such that LE(1, χ) vanishes. We present in this
paper the case of characters of order k, for k any odd prime. More precisely,
the conjectures that we obtain from the random matrix model are (the case
k = 3 of [5] is included for completeness):

Conjecture 1.2. Let k be an odd prime, let E be an elliptic curve defined
over Q, and let

NE,k(X) = # {χ of order k : cond(χ) 6 X and LE(1, χ) = 0} .

If k = 3, then

logNE,k(X) ∼ 1

2
logX as X →∞.

If k = 5, then NE,k(X) is unbounded, but NE,k(X)� Xε for any ε > 0 as
X →∞.

If k > 7, then NE,k(X) is bounded.

In the light of (1.1), and under the Birch and Swinnerton-Dyer conjecture,
one can rewrite NE,k(X) as

NE,k(X) = (k − 1) # {K/Q cyclic of degree k :

cond(K) 6 X and rK(E) > rQ(E)} .

The structure of the paper is as follows. In the second section, we use
modular symbols to rewrite the special values LE(1, χ) as a product of terms
depending only on E, and some algebraic integer nE(χ) depending on the
character. In the third section, we use the embedding of number fields as
lattices in C to give a discretisation of the algebraic integers nE(χ). In the
fourth section, we use this discretisation and the work of Keating and Snaith
to obtain conjectures on the asymptotic behavior of NE,k(X). Finally, the last
section presents some experimental results.

2 Special values and modular symbols

The notation of this section follows the introduction of [12]. Let E be an
elliptic curve over Q. By the work of [16, 15, 1], E is modular and let f(z) =∑

n>1 an e
2πinz be the Fourier expansion of the modular form associated to E.

Then, the L-function LE(s) is the Mellin transform

LE(s) =
(2π)s

Γ(s)

∫ ∞

0

f(it)ts−1 dt. (2.1)

LE(s) has analytic continuation to the whole complex plane, and satisfies the
functional equation

ΛE(s) =

(√
NE

2π

)s
Γ(s)LE(s) = wEΛE(2− s) (2.2)
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where wE = ±1 is called the root number. From (2.1), we have that LE(1) =
2π
∫∞

0
f(it) dt. For a,m ∈ Q,m > 0, one defines the modular symbols

λ(a,m;E) = λ(a,m; f) = 2π

∫ ∞

0

f
(
it− a

m

)
dt. (2.3)

Let χ be a primitive character of modulus m with Gauss sum

τ(χ) =
∑

a mod m

χ(a)e2πia/m.

The twisted L-function LE(s, χ) satisfies the functional equation

ΛE(s, χ) =

(
m
√
NE

2π

)s
Γ(s)LE(s, χ)

=
wEχ(NE)τ(χ)2

m
ΛE(2− s, χ).

From the identity

χ(n) =
1

τ(χ)

∑

a mod m

χ(a)e2πian/m,

we have

fχ(z) =
∑

n>1

χ(n)ane
2πinz

=
1

τ(χ)

∑

a mod m

χ(a)f (z + a/m)

by rearranging the sums (Birch’s lemma). It then follows that

LE(1, χ) =
1

τ(χ)

∑

a mod m

χ(a)λ(a,m;E). (2.4)

We define

λ+(a,m;E) = λ(a,m;E) + λ(−a,m;E)

= 2π

∫ ∞

0

∑

n>1

an e
−2πnt

(
e2πian/m + e−2πian/m

)
dt

= 4π
∑

n>1

an
(
Re
{
e2πian/m

}) ∫ ∞

0

e−2πntdt

= 2
∑

n>1

an
n

Re
{
e2πian/m

}

which is a real number as E is defined over Q. As in [12], there is a rational
multiple ΩE of the real period such that all λ+(a,m;E) satisfy

Λ(a,m;E) =
λ+(a,m;E)

ΩE

∈ Z.
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In this paper, χ has prime order k > 3. Then, χ(−1) = 1, and we can rewrite
(2.4) as

LE(1, χ) =
ΩE

2τ(χ)

∑

a mod m

χ(a)Λ(a,m;E) (2.5)

where the integers Λ(a,m;E) do not depend on the character χ, but only on
the conductor m. Then, we see from (2.5) that

2τ(χ)LE(1, χ)

ΩE

is an algebraic integer in the field obtained by adding a kth root of unity. In
fact, one can prove the stronger result, in the theorem below, which is critical
to the discretisation of the next section. The particular case k = 3 was proven
in [5]. For any odd prime k, let Q(ξk) be the cyclotomic field obtained by
adding a primitive kth root of unity ξk, and let Q(ξk)

+ be the maximal real
extension Q ⊆ Q(ξk)

+ ⊆ Q(ξk) of degree (k−1)/2 over Q. The ring of integers
of Q(ξk)

+ will be denoted by Z[ξk]
+.

Theorem 2.1. Let k be an odd prime, and let χ be a primitive character of
order k. Then,

2τ(χ)LE(1, χ)

ΩE

=





χ(NE)(k+1)/2 nE(χ) when wE = 1

(
ξ−1
k − ξk

)−1
χ(NE)(k+1)/2 nE(χ) when wE = −1

where nE(χ) ∈ Z[ξk] ∩ R = Z[ξk]
+.

Proof: From the functional equation, we have

LalgE (1, χ) =
2τ(χ)LE(1, χ)

ΩE

=
2τ(χ)wEχ(NE)τ(χ)2

mΩE

LE(1, χ)

= wEχ(NE)
2τ(χ)LE(1, χ)

ΩE

= wEχ(NE)LalgE (1, χ)

Let z ∈ C∗ satisfying z = wEχ(NE)z. Then, LalgE (1, χ) = αz−1 with α real. If
wE = 1, we take z = χ(NE)(k+1)/2, and LalgE (1, χ) = αz−1 with α ∈ R∩Z[ξk] =
Z[ξk]

+, which gives the result.
If wE = −1, we take z =

(
ξk − ξ−1

k

)
χ(NE)(k+1)/2, and LalgE (1, χ) = αz−1 with

α ∈ R ∩ Z[ξk] = Z[ξk]
+, which gives the result.

3 Discretisation

By Theorem 2.1, nE(χ) is an algebraic integer in Z[ξk]
+, and there is then a

natural discretisation on the algebraic integer nE(χ) given by the geometry of
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numbers. Let φ be the map

φ : Z[ξk]
+ → R(k−1)/2

α 7→ (σ1(α), σ2(α), . . . , σ(k−1)/2(α))

where Gal(Q(ξk)
+/Q) =

{
σ1 = 1, σ2, . . . , σ(k−1)/2

}
. Let α1, . . . , α(k−1)/2 be an

integral basis for Z[ξk]
+. The image of Z[ξk]

+ in R(k−1)/2 is the lattice generated
by the linearly independent vectors

ω1 = φ(α1), . . . , ω(k−1)/2 = φ(α(k−1)/2).

Let R ⊆ R(k−1)/2 be the region

R =
{
a1ω1 + a2ω2 + · · ·+ a(k−1)/2ω(k−1)/2 :

−1 < ai < 1 for 1 6 i 6 (k − 1)/2 } .

The discretisation given by the embedding of Z[ξk]
+ in R(k−1)/2 is then

nE(χ) = 0 ⇐⇒ φ(nE(χ)) ∈ R. (3.1)

Let χ be any character of conductor m and order k. For any automorphism
σ ∈ Gal(Q(ξk)/Q), let χσ be the character

χσ : (Z/mZ)∗ → 〈ξk〉 ⊆ C∗
a 7→ σ (χ(a))

Then, χσ is also a character of conductor m and order k.

Lemma 3.1. Let k be an odd prime, and χ a character of order k and con-
ductor m. For any σ in Gal(Q(ξk)/Q), we have

|LE(1, χσ)| =
cE,k
m1/2

|nE(χ)σ|

where cE,k is an explicit constant depending only on E and k.

Proof: Using (2.5), we have

LalgE (1, χ)σ =

(
2τ(χ)LE(1, χ)

ΩE

)σ

=
∑

a mod m

χσ(a)Λ(a,m;E) = LalgE (1, χσ).

Suppose first that ωE = 1. Then,

nE(χ)σ = LalgE (1, χ)σ
(
χ(NE)(k+1)/2

)σ

=
2τ(χσ)LE(1, χσ)

ΩE

(
χ(NE)(k+1)/2

)σ
,
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and taking absolute values we get the result with cE,k = ΩE/2. The proof for
ωE = −1 is similar, with a different explicit constant cE,k.

We first consider the case k = 5. We have that Z[ξ5]+ = Z [α] with α =
(1 +

√
5)/2, and G5 = 〈1, τ〉, where the non-trivial automorphism τ sends

√
5

to −
√

5. Then, the lattice of Z [α] in R2 is generated by ω1 = (α, ατ ) and
ω2 = (ατ , α). Let R be the region

R = {aω1 + bω2 : −1 < a < 1,−1 < b < 1} .

By (3.1), nE(χ) = 0 if and only if φ(nE(χ)) = (nE(χ), nE(χ)τ ) ∈ R. As the
region R is not symmetric with respect to the absolute value, and we have a
probability model for |LE(1, χ)|, we also consider the two regions of R2

R1 = {(x, y) : −1 < x, y < 1}
R2 =

{
(x, y) : −

√
5 < x, y <

√
5
}

with the property that R1 ⊆ R ⊆ R2, and

(nE(χ), nE(χ)τ ) ∈ Ri ⇐⇒ (|nE(χ)|, |nE(χ)τ |) ∈ |Ri| (3.2)

where
|Ri| = {(x, y) ∈ Ri : x, y > 0} .

The following lemma is now immediate from (3.2) and Lemma 3.1

Lemma 3.2. Let σ ∈ Gal(Q(ξ5)/Q) be an automorphism which restricts to
the non-trivial automorphism of Q(

√
5). For i = 1, 2, we have

(nE(χ), nE(χ)σ) ∈ Ri ⇐⇒ |LE(1, χ)|, |LE(1, χσ)| 6 ci√
m

where c1, c2 are explicit constants depending only on E.

We now suppose that k > 7. Let B be the non-zero constant

B = max
16i6(k−1)/2

(k−1)/2∑

j=1

|σi(αj)|,

and let R ⊆ R′ ⊆ R(k−1)/2 be the region

R′ =
{

(x1, . . . , x(k−1)/2) : −B 6 xi 6 B for 1 6 i 6 (k − 1)/2.
}

Then, nE(χ) = 0 ⇒ φ(nE(χ)) ∈ R′ by (3.1). The following lemma is now
immediate from Lemma 3.1

Lemma 3.3. Let σ1, . . . , σ(k−1)/2 ∈ Gal(Q(ξk)/Q) be a set of representatives
for Gk = Gal(Q(ξk)

+/Q). Then, φ(nE(χ)) ∈ R′ if and only if

|LE(1, χσi)| 6 ck
m1/2

for 1 6 i 6 (k − 1)/2

where ck is an explicit constant depending only E and k.
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4 Unitary Random Matrices

Let U(N) be the set of unitary N × N matrices with complex coefficients
which forms a probability space with respect to the Haar measure. For each
A ∈ U(N), let

PA(λ) = det(A− λI)

be the characteristic polynomial of A. For any s ∈ C, let

MU(s,N) =

∫

U(N)

|PA(1)|s dHaar

be the moments for the distribution of |PA(1)| in U(N) with respect to the
Haar measure. In [10], Keating and Snaith proved that

MU(s,N) =
N∏

j=1

Γ(j)Γ(j + s)

Γ2(j + s/2)
, (4.1)

and then MU(s,N) is analytic for Re(s) > −1, and has meromorphic continua-
tion to the whole complex plane. By Fourier inversion, the probability density
of |PA(1)| is

p(x) =
1

2πi

∫

(c)

MU(s,N)x−s−1ds

for some c > −1. Then, for any I ⊆ R,

Prob (|PA(1)| ∈ I) =

∫

I

p(x) dx.

In our application to the vanishing of twisted L-functions, we will be interested
only in small values of x where the value of p(x) is determined by the first pole
of MU(s,N) at s = −1. More precisely, for

x 6 N−1/2,

one can show that

p(x) ∼ G2(1/2)N 1/4 as N →∞,

where G(z) is the Barnes G-function, with special value

G(1/2) = exp

(
3

2
ζ ′(−1)− 1

4
log π +

1

24
log 2

)

(see [10, p. 81] or [7, p. 58] for more details).
We now consider the moments for the special values of L-functions in fam-

ilies of twists. Fix k > 3, and let

Sk(X) = {χ of order k and conductor 6 X}
Nk(X) = #Sk(X) ∼ bkX
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with an explicit constant bk (see for example [2]). We then define for any s ∈ C

ME(s,X) =
1

Nk(X)

∑

χ∈Sk(X)

|LE(1, χ)|s (4.2)

The family of twists of order k has unitary symmetry, as do the values |ζ(1/2+
it)| on the critical line. Then

Conjecture 4.1 (Keating and Snaith Conjecture for twists of order k).

ME(s,X) ∼ aE(s/2)MU(s,N) as N = 2 logX →∞,
where aE(s/2) is an arithmetic factor depending only on the curve E.

In the conjecture, the relation between N and X is obtained by equating
the mean density of eigenangles of matrices in the unitary group, and the
mean density of non-trivial zeroes of the twisted L-functions LE(s, χ) at a
fixed height (see [5]). The arithmetic factor aE(s) can not be obtained from
the random matrix theory, and has to be determined separately for each family
from its arithmetic. This was done for the family of cubic twists in [5], and
could be done for the family of twists of order k for each k. The arithmetic
factor aE(s) would then be a meromorphic function for all s ∈ C. As it will be
seen below, the only influence of the arithmetic factor aE(s) in our application
is that the special value aE(−1/2) will be part of the constant of the conjectural
asymptotic of NE,k(X). This would not provide any further information to the
cases k > 5 considered in this paper in view of Conjecture 1.2.

From Conjecture 4.1, the probability density pE(x) for the distribution of
the special values |LE(1, χ)| for characters of order k is

pE(x) =
1

2πi

∫

(c)

ME(s,X)x−s−1 ds

∼ 1

2πi

∫

(c)

aE(s/2)MU(s,N)x−s−1 ds (4.3)

as N = 2 logX → ∞. As above, when x 6 N−1/2, the value of pE(x) is
determined by the residue of MU(s,N) at s = −1, and it follows from (4.3)
that

pE(x) ∼ CE log1/4 X (4.4)

for x 6 (2 logX)−1/2, X →∞, and CE = 21/4aE(−1/2)G2(1/2).
Let χ be a character of order k > 3 and conductor m. We apply the above

model to find the probability that |LE(1, χ)| < cm−1/2, for some constant
c > 0. For x < cm−1/2 < (2 logm)−1/2 (for m large enough), we have pE(x) ∼
CE log1/4 m, and then

Prob
(
|LE(1, χ)| < cm−1/2

)
∼

∫ cm−1/2

0

CE log1/4 m dx

= cCE
log1/4 m

m1/2
. (4.5)
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We now use the probability density of the random matrix model with the
discretisation of Section 3 to obtain conjectures for the vanishing of the L-
values LE(1, χ). We first suppose that k = 5, and as in the previous section, let
σ ∈ Gal(Q(ξ5)/Q) which restricts to the non-trivial automorphism of Q(

√
5).

We saw in the previous two sections that

LE(1, χ) = 0 ⇐⇒ φ(nE(χ)) = (nE(χ), nE(χ)σ) ∈ R.

As R1 ⊆ R ⊆ R2, and using Lemma 3.2, the probability that LE(1, χ) is zero
is bounded below by

Prob

(
|LE(1, χ)| < c1√

m

)
Prob

(
|LE(1, χσ)| < c1√

m

)

and bounded above by

Prob

(
|LE(1, χ)| < c2√

m

)
Prob

(
|LE(1, χσ)| < c2√

m

)
.

Assuming that |LE(1, χ)| and |LE(1, χσ)| are independent identically dis-
tributed random variables, and using (4.5), we get that the probability that
LE(1, χ) is zero is about

log1/2 m

m
,

neglecting all constants which are not significant here. The sum of the proba-
bilities is

∑

χ∈S3(X)

log1/2 m

m
∼ 2b3

3
log3/2 X. (4.6)

As discussed in [5], the exact power of logX that is obtained with the random
matrix approach depends subtly on the discretisation, and is difficult to pre-
dict. For example, rational torsion of order three on the elliptic curve seemed
to cause extra vanishing of the twisted L-values LE(1, χ) for cubic characters,
and changed the power of logarithm in the conjectural asymptotic for NE,k(X)
of [5]. For k = 5, the sum of the probabilities is just on the border between
convergence and divergence, and the random matrix model seems to indicate
that the number of quintic twists such that LE(1, χ) vanishes is infinite, but
that NE,k(X)� Xε for any ε > 0. This agrees with the empirical evidence of
Section 5.

We now suppose that k > 7. Let σ1 = 1, . . . , σ(k−1)/2 be elements of the
Galois group of Q(ξk)/Q which form a set of representatives for the Galois
group of Q(ξk)

+/Q. As we saw in the two previous sections,

LE(1, χ) = 0 ⇐⇒ φ(nE(χ)) = (nE(χ)σ1 , . . . , nE(χ)σ(k−1)/2) ∈ R.
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As R ⊆ R′, and using Lemma 3.3, the probability that LE(1, χ) is zero is
bounded by

Prob

(
|LE(1, χσ1)| < ck√

m

)
, . . . ,Prob

(
|LE(1, χσ(k−1)/2)| < ck√

m

)
.

Assuming that |LE(1, χσi)| are independent identically distributed random
variables for 1 6 i 6 (k − 1)/2, and using (4.5), we get that the probabil-
ity that LE(1, χ) is zero is

log(k−1)/8 m

m(k−1)/4
,

neglecting all constants which are not significant here. Summing the probabil-
ities, this gives for k > 7

∑

χ∈S3(X)

log(k−1)/8 m

m(k−1)/4
= O(1). (4.7)

From the random matrix model, we then conjecture that the number of twists
of order k > 7 such that LE(1, χ) vanishes is bounded. This also agrees with
the empirical evidence of Section 5.

5 Numerical Evidence

The following table shows the observed number of vanishing twists LE(1, χ) for
characters of orders three, five and seven, and for the first three elliptic curves
in the Cremona catalogue [4]. For each elliptic curve E, the characters with
conductor prime to NE and less than two million were considered. Any two
characters of conductor m and order k generating the same cyclic subgroup
of the character group are conjugate, and hence the special values LE(1, χ)
vanish simultaneously by Lemma 3.1. The number in the table records one of
each class of conjugate characters for which the special value vanishes, which is
1/(k− 1) of the number of characters with vanishing special value. The twists
of order eleven in the same range for the curve E14 were also computed, and
no vanishing were found.

Curve Cubic Quintic Septic
vanishing vanishing vanishing

E11 1152 15 2
E14 4347 10 0
E15 2050 11 0

The results for cubic twists have been analyzed in [5] and support Con-
jecture 1.2. The results for quintic and septic twists are too sparse to either
support or refute Conjecture 1.2, but they nevertheless illustrate the extreme
scarcity of vanishing in higher order twists which is predicted by the conjecture.
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Computing central values of
L-functions

Fernando Rodriguez-Villegas∗

1

How fast can we compute the value of an L-function at the center of the critical
strip?

We will divide this question into two separate questions while also making
it more precise. Fix an elliptic curve E defined over Q and let L(E, s) be
its L-series. For each fundamental discriminant D let L(E,D, s) be the L-
series of the twist ED of E by the corresponding quadratic character; note
that L(E, 1, s) = L(E, s).

A. How fast can we compute the central value L(E, 1)?
B. How fast can we compute L(E,D, 1) for D in some interval say a 6

D 6 b?

These questions are obviously related but, as we will argue below, are not
identical.

We should perhaps clarify what to compute means. First of all, we know,
thanks to the work of Wiles and others, that L(E, s) = L(f, s) for some
modular form f of weight 2; hence, L(E, s), first defined on the half-plane
<(s) > 3/2, extends to an analytic function on the whole s-plane which sat-
isfies a functional equation as s goes to 2 − s. In particular, it makes sense
to talk about the value L(E, 1) of our L-function at the center of symmetry
s = 1. The same reasoning applies to L(E,D, s).

As a first approximation to our question we may simply want to know the
real number L(E,D, 1) to some precision given in advance; but we can expect
something better. The Birch–Swinnerton-Dyer conjectures predict a formula
of type

L(E,D, 1) = κDm
2
D, (1.1)

for some integer mD and κD an explicit easily computable positive constant.
(Up to the usual fudge factors the conjectures predict that m2

D, if non-zero,
should be the order of the Tate–Shafarevich group of ED.) To compute
L(E,D, 1) would then mean to calculate mD exactly.

∗Support for this work was provided in part by a grant of the NSF
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In fact, formulas à la Waldspurger have the form (1.1) with mD the |D|-th
coefficient of a modular form g of weight 3/2 which is in Shimura correspon-
dance with f . The main point of this note is to discuss informally how explicit
versions of such formulas can be used for problem B above.

Let us also note the interesting fact that mD, being related to the coefficient
of a modular form, typically does not have a constant sign. The significance
of the extra information provided by sgn(mD) remains a tantalizing mystery.

2

There is a standard analytic method to compute L(E, 1), which we now recall.
If E has conductor N then the associated modular form f has level N and

f |wN = −εf,

where wN is the Fricke involution and ε is the sign of the functional equation
for L(E, s). Concretely, we have

f

(
i√
Nt

)
= εt2f

(
it√
N

)
, t ∈ R.

It follows that
(

2π√
N

)−s
Γ(s)L(f, s) =

∫ ∞

0

f

(
it√
N

)
ts
dt

t
.

Now break the integral as
∫ 1

0
+
∫∞

1
, make the substitution t 7→ 1/t in the first

and use the Fricke involution to obtain
(

2π√
N

)−s
Γ(s)L(f, s) =

∫ ∞

1

f

(
it√
N

)
ts
dt

t
+ ε

∫ ∞

1

f

(
it√
N

)
t2−s

dt

t
.

(This is the classical argument to prove the functional equation of L(E, s) and
goes back to Riemann who used it for his zeta function.)

Now plug in s = 1 to get
√
N

2π
L(E, 1) = (1 + ε)

∑

n>1

an
n
e−2πn/

√
N (2.1)

where f has Fourier expansion

f =
∑

n>1

an q
n, q = e2πiz.

Assume for simplicity that gcd(N,D) = 1. Then the conductor of ED is ND2

and (2.1) applied to ED yields, more generally,

|D|
√
N

2π
L(E,D, 1) = (1 + εD)

∑

n>1

(
D

n

)
an
n
e−2πn/|D|

√
N , (2.2)



262 F. Rodriguez-Villegas

with εD the sign in the functional equation of L(E,D, s).

We know that |an| grows no more than polynomially with n (a straightfor-
ward argument gives |an| = O(n)). It follows that for a fixed E and varying D
we will need to take, very roughly, of the order of O(|D|) terms in the sum to
obtain a decent approximation to L(E,D, 1). Assuming the Birch–Swinnerton-
Dyer conjectures we may use (2.2) to compute m2

D in (1.1) exactly. However,
if we know that mD is the D-th coefficient of some specific modular form (i.e.
we have a formula à la Waldspurger) we would get |mD| but would not be able
to recover sgn(mD).

Using this method to compute, say, L(E,D, 1) for |D| 6 X would take
time of the order of O(X2). We will see below that using formulas of type
(1.1) we can reduce this to O(X3/2) for at least some fraction of such D’s.

3

Before tackling L(E,D, 1) let us consider the case of the special value of
an Eisenstein series of weight 2 (as opposed to a cusp form as we have for
L(E,D, 1)). What follows is meant only as an illustration of the general case.

Let the L-function be L(
(
D
·
)
, s−1)L(

(
D
·
)
, s) with D < 0 the discriminant

of an imaginary quadratic field K. Its value at s = 1 is essentially h(D)2, where
h(D) is the class number of K, and we find an analogue of (1.1) with h(D)
playing the role of mD. There are many excellent algorithms for computing
the class number h(D) (see for example [1] chap. 5). Unfortunately, these do
not obviously generalize to the calculation of mD. The main reason for this is
that the class group of K is easy to describe (both its elements and the group
operation) in terms of binary quadratic forms, whereas its elliptic analogue,
the Tate-Shafarevich group of ED, is notoriously intractable.

The standard analytic method of the previous section yields the following
formula (which was known to Lerch, see [2] vol. III, p. 171)

h(D)2 =
w2
D

√
|D|

2π

∑

n>1

(
D

n

)
σ(n)

n
e−2πn/|D|, (3.1)

where wD is the number of units in K and σ(n) :=
∑

d|n d is the divisor sum

function. Again, we need to take, roughly, O(|D|) number of terms in the sum
to obtain a reasonable approximation of the left hand side. In this case, we in
fact have an exact formula requiring D terms, namely, Dirichlet’s class number
formula

h(D) = − wD
2|D|

|D|−1∑

n=1

n

(
D

n

)
. (3.2)

Neither one of these formulas is, however, particularly useful for computing
h(D) in practice. On the other hand, it may be worth pointing out that
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similar arguments yield the formula [2] vol. III, p. 153.

h(D) = wD
∑

n>1

(
D

n

)
1

1− (−1)neπn/
√
|D|
, D ≡ 5 mod 8,

with the number of necessary steps now reduced to the order of O(
√
|D|).

(Analogous formulas can be given for D in other congruence classes modulo
8.)

To make the connection to the general case of computing L(E,D, 1) that
we are considering we mention two other possible approaches to computing
h(D) that do generalize.

(I) The first is to follow Gauss and realize ideal classes of K as classes of
primitive, positive definite binary quadratic forms of discriminant D. Each
class has a unique representative Q = (a, b, c) in the standard fundamental
domain (what is known as a reduced form) and we can simply enumerate
these. A straightforward algorithm is as follows: run over values of b with
b ≡ D mod 2 and 0 6 b 6

√
|D|/3; for each b decompose (b2 − D)/4 as ac

with 0 < a 6 c. Add one or two to the total count as the case may be if
gcd(a, b, c) = 1.

Though this algorithm also takes time O(|D|) the constant of proportion-
ality is very small making the algorithm quite practical. An important point
to notice for our purpose, however, is that if we wanted to compute h(D) for
0 6 |D| 6 X we may simply run over all triples a, b, c of size at most

√
X/3

checking the necessary conditions on (a, b, c) for it to be a reduced form. In
this way we obtain an algorithm which will run in time O(X3/2).

(II) The second approach is again to follow Gauss but in a different direction.
He proved that h(D) is related to the number of representations of |D| as a
sum of three squares. One precise form of this relation is the following identity
(see [3] p.177)

1
2

∑

x≡y≡z mod 2

qx
2+y2+z2

= 1
2

+ 12
∑

D

H2(D) q|D| (3.3)

where D runs through all negative discriminants (i.e. D < 0 and D ≡ 0, 1 mod
4), and H2 is a variant of the Hurwitz class number (see [3], page 120). (For
us it suffices to know that it is related to h(D); for example for D ≡ 5 mod 8
a fundamental discriminant we have H2(D) = h(D).)

There are sophisticated techniques for computing the coefficients of the
left hand side, such as convolution which uses the fast Fourier transform to
compute products of q-series. But even a simple enumeration of the lattice
points x2 + y2 + z2 6 X, x ≡ y ≡ z mod 2 would again take time O(X3/2).

The two approaches (I) and (II) are of course related; they amount to
counting (in an appropriate sense) the number of representations of D by a
certain ternary quadratic form. In case (I) we count the number of solutions
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to b2 − 4ac = D up to SL2(Z)-equivalence; in (II), the number of solutions to
|D| = x2 + y2 + z2 with x ≡ y ≡ z mod 2. Note the crucial difference that the
ternary quadratic form involved is indefinite in case (I) and positive definite
in case (II).

A more geometrical point of view is to think that we are dealing with
Heegner points. In case (I) we may associate to a primitive positive definite
binary quadratic form Q = (a, b, c) the point zQ = (−b+

√
D)/2a in the upper

half planeH. The respective actions of SL2(Z) on forms andH are compatible;
hence, the class of Q determines a unique (Heegner) point in SL2(Z)\H of
discriminant D.

It is a bit less intuitive how to think of Heegner points in case (II) but
this was worked out by Gross [3]. The main ingredient is a positive definite
quaternion algebra B over Q ramified, say, at ∞ and a prime N . Pick a
maximal order R of B and let I1, . . . , In be representatives for the (left) ideal
classes of R. Let Ri be the right order of Ii for i = 1, · · · , n.

Fix an imaginary quadratic field K of discriminant D. Then we can think
of a Heegner point of discriminant D (what Gross calls a special point) as an
(optimal) embedding of the ring of integers OK into some Ri. Eichler has
proved that the total number of such points, each counted up to conjugation
by R?

i , is (1 −
(
D
N

)
)h(D). (In fact, the situation is quite analogous to that of

case (I) if we take the indefinite algebra B = M2(Q) and R = M2(Z).)
For example, if N = 2 then the algebra B is the usual Hamilton quater-

nions and we may pick R to be the order discovered by Hurwitz (in standard
notation)

R = Z+ Zi+ Zj + Z 1
2
(1 + i+ j + k).

In this case there is only one class of left R-ideals represented by R itself.
Hence a Heegner point is an embedding φ : OK → R.

How do we find such embeddings? The main thing we need is a w ∈ R
with w2 = D. Such a quaternion, because D is a scalar, necessarily has
trace t(w) = 0 and norm n(w) = −D and conversely. Elements of trace
0 in R form a rank 3 lattice and hence n(w) = −D is a representation of
D by a certain ternary quadratic form associated to R. A few congruence
conditions are needed to actually produce an optimal embedding φ out of w
but the upshot is that the problem becomes one about representations of −D
by ternary quadratic forms. For example, in the case N = 2 Eichler’s count of
embeddings can be completely encoded in the identity (3.3); the presence of
the factor 12 in that formula is due to the fact that this is the order of R?/±1.
More details on this setup are given below in §4 (II).

4

We now return to the main case of computing L(E,D, 1) and describe ana-
logues of cases (I) and (II) of the previous section. These analogues are the
remarkable results of Gross and Zagier.



Computing central values of L-functions 265

(I) Let us assume for simplicity that E has conductor a prime N , sign of the
functional equation equal to −1, L′(E, 1) 6= 0, and E(Q) = 〈P0〉. If f is the
weight 2 eigenform associated to E then we get a map

Φ : X0(N) −→ C/L
z 7→ 2πi

∫ z
i∞ f(u) du

(4.1)

where X0(N) is the modular curve of level N and L ⊂ C is a certain lattice
of periods of f . It is known that C/L = E ′(C) for some elliptic curve E ′/Q
isogenous to E. Since the L-function is unchanged by isogenies we may assume
without loss of generality that E ′ = E.

Let K be an imaginary quadratic field of discriminant D < −4 in which
N splits. Choose b∗ ∈ Z such that b2

∗ ≡ D mod N ; this is possible by the
assumption that N splits in K. Note also that N does not divide b∗. We
want to consider Heegner points on X0(N) of discriminant D. To define them
concretely choose representatives Q = (a, b, c) of the h(D) classes of binary
quadratic forms with N | a and b ≡ b∗ mod N . (For example, start with
representatives (a, b, c) with gcd(a,N) = 1 and compose them with the fixed
form (N, b∗, (b2

∗ −D)/2N).)
Then zQ := (−b +

√
D)/2/a) ∈ X0(N) is well defined and PD :=∑

Q Φ(zQ) ∈ E(K). Moreover, complex conjugation fixes PD, by the assump-
tion on the sign of the functional equation. Hence PD actually is in E(Q) (and
is independent of the choice of b∗).

One consequence of the results of Gross–Zagier is the following [15],[4], [5].
By our assumption on E(Q) we have PD = mDP0 for some mD ∈ Z and hence

L(E,D, 1) = κDm
2
D; (4.2)

where κD is an explicit easily computable positive constant; i.e. we have a
formula of type (1.1).

Usually one regards the Gross-Zagier formula as a way to compute a ra-
tional point PD on E whose height is given in terms of L(E,D, 1)L′(E, 1) and
hence obtaining, when this value does not vanish, a confirmation of the predic-
tions of the Birch–Swinnerton-Dyer conjecture. Here, instead, we are taking
the point of view that the points of E(Q) are known and use the Gross–Zagier
formula as a means to computing L(E,D, 1).

To calculate mD in practice it is better to work on the E(C) = C/L model
of E rather than, say, a Weierstrass equation. Let z0 ∈ C represent, modulo
L, the point P0 ∈ E(Q). We first compute an approximation to

zD :=
∑

Q

∑

n>1

an
n
e2πinzQ .

Then we solve the linear equation below for integers n1 and n2

zQ = mDz0 + n1ω1 + n2ω2,
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where ω1, ω2 are a basis for L. (In fact, multiplying by 2 if necessary, we may
assume that ω1 ∈ R and ω1 ∈ iR and hence by taking real parts solve only a
three term equation instead.)

The result is a practical and reasonably efficient algorithm for computing
mD. The number mD is the D-th Fourier coefficient of a weight 3/2 modular
form g of level 4N which is in Shimura correspondence with f . It is interesting
that we can compute the Fourier coefficients of g directly without any knowl-
edge of the whole vector space of modular forms in which g lies; though we do,
of course, start by knowing f itself. (We have only described the calculation
for certain D’s but there is analogous way to get all coefficients.)

Together with my student Ariel Pacetti we implemented the above algo-
rithm in GP. The corresponding routines can be found at

http://www.ma.utexas.edu/users/villegas/cnt/

under Heegner points.
Here is a sample example. Let E be the curve y2 + y = x3−x of conductor

N = 37 (this is the elliptic curve over Q of positive rank with smallest conduc-
tor). This case was described in detail in [15]. It is known that E(Q) = 〈(0, 0)〉.

? e=ellinit([0,0,1,-1,0]); anvec=ellan(e,5000); ? for(d=5,100,

if(isfundamental(-d) && kronecker(-d,37)==1,

print(-d," ",ellheegnermult(e,-d,[0,0],0,anvec)[1])))

-7 -11 -40 -47 -67 -71 -83 -84 -95

1 -1 -2 1 -6 -1 1 1 0

The first row is D, the second mD (for typographical reasons we transposed the
actual GP output). These values agree, fortunately, with Zagier’s [15] formula
(28) up to a global negative sign.

In our implementation at least the algorithm is not that well suited for
computing L(E,D, 1) for all D < 0 and |D| < X for very large X; for this, it
would be better to adapt (see §5) the ideas of (II) below but these have not
been fully implemented as yet.

(II) Let B over Q be the (unique up to isomorphism) positive definite quater-
nion algebra ramified at ∞ and a prime N . Pick a maximal order R of B and
let I1, . . . , In be representatives for the (left) ideal classes of R. Let Ri be the
right order of Ii for i = 1, · · · , n. The class number n of R, in contrast with
h(D), has a simple formula and is roughly of size N/12.

For example, if N ≡ 3 mod 4 we can describe B as the algebra over Q with
generators i, j such that i2 = −1, j2 = −N and ij = −ji. Also in this case we
can take R = Z+ Zi+ Z 1

2
(1 + j) + Zi1

2
(1 + j).

There are various ways to compute representatives I1, · · · , In of the ideal
classes (for algorithms for quaternion algebras see [12]). If N ≡ 3 mod 4 there
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is an algorithm which is completely analogous to that of Gauss §3 (I) for binary
quadratic forms. It exploits the fact that our choice of R has an embedding of
Z[i] and hence allows us to view R-left ideals as rank 2 modules over Z[i]; then
classes of R-ideals correspond to classes of positive definite binary Hermitian
forms over Z[i] of discriminant −N . Instead of H we now need to work on
hyperbolic 3-space where, as it turns out, the action of SL2(Z[i]) has a very
simple fundamental domain. This yields an algorithm which is almost verbatim
that of Gauss for binary forms over Z. Details can be found in [13].

For example, if N = 11 then there are two classes of positive definite binary
Hermitian forms of discriminant−11 over Z[i]; namely, (1, 1, 3) and (2, 1+2i, 2)
corresponding to the two ideals

I0 := R = Z+ Zi+ Z 1
2
(1 + j) + Zi1

2
(1 + j)

and
I1 := 2Z+ Z2i+ Z 1

2
(1 + 2i+ j) + Zi 1

2
(1 + 2i+ j)

representing the n = 2 classes of left R-ideals.
Let VQ be the Q vector space of functions on the set {I0, . . . , In}. For each

m ∈ Z>0 there is an operator B(m) acting on VQ, the Brandt matrix of order
m, which encodes the number of representations of m by certain quaternary
quadratic forms (see [3] (1.4)). Let B be the algebra generated over Z by all
the B(m); it is commutative and B⊗Z Q is semisimple.

On the other hand, we have the space MC of modular form of weight 2 on
Γ0(N) (known to be of dimension n) and the Hecke operators Tm acting on MC.
Let T be the algebra spanned by the Tm over Z ; like B it is commutative and
T⊗ZQ is semisimple. This algebra preserves the Q vector space MQ ⊂MC of
dimension n consisting of those modular forms in MC with Fourier coefficients
in Q.

These two setups are closely related and indeed we have a special case of the
Jacquet–Langlands correspondence. Eichler proved that Tm and B(m) have
the same trace for all m ∈ N. Hence, by semisimplicity of the algebras the map
Tm 7→ B(m) induces a ring isomorphism T ' B. It follows that eigenspaces of
VQ and MQ, under the action of B and T respectively, correspond to each other.
Since we also have multiplicity one these eigenspaces are one-dimensional.

In conclusion, given f =
∑

n>0 anq
n ∈ MC an eigenform for all Hecke

operators Tm (so that Tmf = amf) there is an ef ∈ VQ ⊗Z K unique up to
scalars such that B(m)ef = amef . (Here K denotes the field Q(a0, a1, . . .)
generated by the Fourier coefficients of f .)

In fact, this correspondence gives an efficient way to compute Fourier co-
efficients of eigenforms in MC (see [12]). An implementation of the corre-
sponding algorithms can be found in the above mentioned website (under
qalgmodforms).
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Here is a sample GP session.

? R=qsetprime(11);

? brandt(R,2)~

[1 3]

[2 0]

? brandt(R,3)~

[2 3]

[2 1]

The first line defines R as a maximal order in the algebra ramified at 11 and
∞; the others compute the corresponding Brandt matrices. We find that these
matrices have two eigenvectors: eE = (1/2, 1/3) and ef = (−1, 1) correspond-
ing to an Eisenstein series and a cusp form, respectively.

The above implementation is intended for small to medium scale compu-
tations. For large scale computations one should use the graph method ideas
of Mestre and Oesterlé [8], which exploit the sparse nature of the Brandt ma-
trices.

Now following Gross we show how to associate a modular form of weight
3/2 to an eigenvector ef . Let Ri be the right order of Ii and let Li ⊂ Ri be
the ternary lattice defined by

Li : w ∈ Ri, t(w) = 0, w ∈ Z mod 2Ri.

Let gi be the corresponding theta series

gi(τ) := 1
2

∑

w∈Li
qn(w), q = e2πiτ .

Gross [3] prop. 12.9 describes precisely how the D-th coefficient ai(D) of gi
relates to the optimal embeddings of imaginary quadratic orders of Q(

√
D)

into Ri.
These theta series are modular forms of weight 3/2 and level 4N and, in

fact, belong to a certain subspace U defined by Kohnen. This subspace is
determined by the condition that the coefficient of qd of a form should be zero
unless D := −d is a discriminant, i.e., D ≡ 0, 1 mod 4, and

(
D
N

)
6= 1. The

weight 3/2 Hecke operators Tm2 preserve U .
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Define

g :=
∑

i

ef (i) gi =
∑

D

mD q
|D| ∈ U.

This form is identically zero if the sign in the functional equation of f is −1.
If g is non-zero it is a modular form in Shimura correspondence with f ; i.e.,
Tm2g = amg, where Tmf = amf . Moreover, we have the Waldspurger formula
[3] 13.5

L(f, 1)L(f ⊗ χD, 1) = κf
δD√
|D|

m2
D, (4.3)

where D is a fundamental discriminant with
(
D
N

)
6= 1, χD is the associated

quadratic character, κf > 0 is a constant depending only on f and δD := 2 if
N | D and δD := 1 otherwise.

Finally, let E/Q be an elliptic curve of prime conductor N and sign +1
in its functional equation. Let f and g be the corresponding modular forms
of weight 2 and 3/2 respectively as above. Then if L(f, 1) 6= 0 we obtain
from (4.3) a formula of type (1.1) with mD the Fourier coefficient of g. As
in §3 (II) to compute mD for |D| < X we could run through all w ∈ Li
with n(w) 6 X whose total number is O(X3/2). Again various computational
techniques could also be used to speed up the calculation of mD. Note that in
any case all computations are done with integer arithmetic.

Tables of mD’s for several curves and the routines to compute them can be
found at G. Tornaŕıa’s website

http://www.ma.utexas.edu/users/tornaria/cnt/

among other goodies (an interactive version of Cremona’s tables of elliptic
curves and an interactive table of ternary quadratic forms).

5

We conclude with some remarks about the general situation.

1. It follows from (4.3) that if L(f, 1) = 0 then the form g vanishes identically.
In this case we naturally need to do something else.

In [7] we work out an extension of Gross’s work introducing an auxiliary
prime l; the theta series gi, for example, are modified by introducing an ap-
propriate weight function. The complexity of algorithms only increase by a
factor essentially proportional to l.

2. If the level N is not prime but square-free the situation is not too
different from the one described above. The downside is that L(E,D, 1) can
be computed this way only for a certain fraction of D’s (determined by local
conditions). One needs to consider a quaternion algebra B ramified at ∞ and
at primes l | N for which the Atkin-Lehner involution acts as f |wl = −f and
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an Eichler order in B of level the product of the remaining primes factors of
N .

3. If the level is not square-free things become quite a bit more complicated;
for example, the algebra B of Brandt matrices typically does not act with
multiplicity one and some modular forms are simply missing. The arithmetic
of the corresponding orders, which are no longer Eichler orders in general,
also becomes more involved and, moreover, one needs to consider two types of
orders: one for the weight 2 side and another for the weight 3/2 side; see [9],
[10], [11] some work on this case.

4. To compute twists L(f ⊗ χl, 1) by real quadratic fields Q(
√
l) one may

consider a twist fD := f⊗χD by an auxiliary imaginary quadratic field Q(
√
D)

and find a formula of type (1.1) for L(fD⊗χDl, 1). The form fD typically does
not have square-free level so several corresponding difficulties ensue, see [11].

5. Forms of higher weight can also be handled using quaternion algebras by
introducing harmonic polynomials as weight functions for the theta functions
(both for the ideals Ii corresponding to forms of weight 2 + 2r and for the
ternary lattices Li corresponding to forms of weight 3/2 + r) see [6], [14].
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[10] A. Pacetti, G. Tornaŕıa, Examples of Shimura correspondence for level p2 and
real quadratic twists, in this volume.

[11] A. Pacetti, G. Tornaŕıa, Shimura correspondence for level p2 and the central
values of L-series, preprint (2005).

[12] A. Pizer, An Algorithm for Computing Modular Forms on Γ0(N), Journal of
Algebra 64, (1980), 340-390.

[13] F. Rodriguez-Villegas, Explicit models of genus 2 curves with split CM Algo-
rithmic number theory (Leiden, 2000), 505–513, Lecture Notes in Comput. Sci.,
1838, Springer, Berlin, (2000).
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Computation of central value of
quadratic twists of modular

L−functions

Z. Mao, F. Rodriguez-Villegas and G. Tornaŕıa

1 Introduction

Let f ∈ S2(p) be a newform of weight two, prime level p. If f(z) =∑∞
m=1 a(m)qm, where q = e2πiz, and D is a fundamental discriminant, we

define the twisted L-function

L(f,D, s) =
∞∑

m=1

a(m)

ms

(
D

m

)
.

It will be convenient to also allow D = 1 as a fundamental discriminant, in
which case we write simply L(f, s) for L(f, 1, s).

In this paper we consider the question of computing the twisted central
values {L(f,D, 1) : |D| 6 x} for some x.

It is well known that the fact that f is an eigenform for the Fricke involution
yields a rapidly convergent series for L(f,D, 1). Computing L(f,D, 1) by
means of this series, which we call the standard method, takes time very roughly
proportional to |D| and therefore time very roughly proportional to x2 to
compute L(f,D, 1) for |D| 6 x. We will see that this can be improved to
x

3/2 by using an explicit version of Waldspurger’s theorem [W]; this theorem
relates the central values L(f,D, 1) to the |D|-th Fourier coefficient of weight
3/2 modular forms in Shimura correspondence with f .

Concretely, the formulas we use have the basic form

L(f,D, 1) = ? κ∓
|c∓(|D|)|2√
|D|

, sign(D) = ∓, (1.1)

where ? = 1 if p - D, ? = 2 if p | D, κ− and κ+ are positive constants
independent of D, and c−(|D|) (resp. c+(|D|)) is the |D|-th Fourier coefficient
of a certain modular form g− (resp. g+) of weight 3/2.

Gross [G] proves such a formula, and gives an explicit construction of the
corresponding form g−, in the case that L(f, 1) 6= 0. The purpose of this
paper is to extend Gross’s work to all cases. Specifically, we give an explicit
construction of both g− and g+, regardless of the value of L(f, 1), together
with the corresponding values of κ− and κ+ in (1.1). The proof of the validity
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of this construction will be given in a later publication and relies partly in the
results of [BM].

The construction gives g− and g+ as linear combinations of (generalized)
theta series associated to positive definite ternary quadratic forms. Computing
the Fourier coefficients of these theta series up to x is tantamount to running
over all lattice points in an ellipsoid of volume proportional to x

3/2 . Doing this
takes time roughly proportional to x

3/2 which yields our claim above.
This approach to computing L(f,D, 1) has several other advantages over

the standard method. First, the numbers c(|D|) are algebraic integers and are
computed with exact arithmetic. Once c(|D|) is know it is trivial to compute
L(f,D, 1) to any desired precision. Second, the c(|D|)’s have extra informa-
tion; if f has coefficients in Z, for example, (1.1) gives a specific square root
of L(f,D, 1) (if non-zero), whose sign remains a mystery.

Moreover, the actual running time of our method vs. the standard method
is, in practice, significantly better even for small x.

2 Quaternion algebras and Brandt matrices

A quaternion algebra B over a field K is a central simple algebra of dimension
4 over K. When 2 6= 0 in K we can give B concretely by specifying a K-basis
{1, i, j, k} such that

i2 = α, j2 = β, and k = ij = −ji,

for some non-zero α, β ∈ K. If K = Q we typically rescale and assume that
α, β ∈ Z. A general element of B then has the form b = b0+b1i+b2j+b3k, with
bi ∈ K and multiplication in B is determined by the above defining relations
and K-linearity.

The conjugate of b is defined as

b = b0 − b1i− b2j − b3k.

We define the (reduced) norm and trace of b by

N b := bb = b2
0 − αb2

1 − βb2
2 + αβb2

3, Tr b := b+ b = 2b0.

Let B be a quaternion algebra over K = Q. For ν a rational prime we let
Qν be the field of ν-adic numbers and for ν =∞ we let Qν = R. We call ν, a
rational prime or ∞, a place of Q.

The localization Bν := B ⊗ Qν is a quaternion algebra over Qν . It is
a fundamental fact of Number Theory that Bν is either isomorphic to the
algebra M2(Qν) of 2 × 2 matrices, or a division algebra, which is unique up
to isomorphism. (A division algebra is an algebra in which every non-zero
element has a multiplicative inverse.) The two options are encoded in the
Hilbert symbol (α, β)ν , defined as +1 if Bν is a matrix algebra, −1 if it is a
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division algebra. In the first case we say that B is split at ν, in the second,
that B is ramified at ν.

For example, if ν = ∞ so Qν = R then (α, β)∞ = −1 if and only if α <
0, β < 0 in which case B∞ is isomorphic to the usual Hamilton quaternions. A
quaternion algebra B is definite if it ramifies at∞ otherwise it is indefinite (this
notation is consistent with the nature of the quadratic form on B∞ determined
by the norm N ).

A quaternion algebra B is ramified at a finite number of places and the
total number of ramified places must be even (e.g. the Hilbert reciprocity law
says that

∏
ν(α, β)ν = 1). The set of ramified places determines B up to

isomorphism (the local-global principle). For any finite set S with an even
number of places there is a (unique up to isomorphism) B which ramifies
exactly at places in S.

Let B be a quaternion algebra over Q. An order in B is a (full rank) lattice
R ⊆ B which is also a ring with 1 ∈ R. As for number fields, an element of
an order must be integral over Z, i.e., must satisfy a monic equation with
coefficients in Z (or even more concretely must have integral trace and norm).
Unlike in the commutative case, however, the set of all integral elements of B
is not a ring. The best next thing is to consider maximal orders (which always
exist), i.e., orders not properly contained in another order. But maximal orders
are not unique. In fact, if B is definite, a maximal order is in general not even
unique up to isomorphism though there always is only a finite number of
isomorphism classes of maximal orders in B.

As an illustration consider the classical case α = β = −1 of the Hamilton
quaternions. The algebra is definite and hence ramifies at ν = ∞. It must
ramify at a least one other prime, which turns out to be only ν = 2. To see
this note that

N (b0 + b1i+ b2j + b3k) = b2
0 + b2

1 + b2
2 + b2

3.

There always is a non-trivial solution to the congruence b2
0 + b2

1 + b2
2 + b2

3 ≡
0 mod p for p prime. If p is odd we can lift this solution to a solution in Zp
by Hensel’s lemma obtaining a non-zero quaternion in Bp of zero norm. This
implies that Bp cannot be a divison algebra and hence (−1,−1)p = 1 for p
odd. We must necessarily have then that (−1,−1)2 = −1.

If we want to study the representation of numbers as sum of four squares
it is natural to consider, as Lipschitz did, the arithmetic of the quaternions
with bi ∈ Z. These quaternions form an order R′, but, as it turns out, it is not
maximal. Indeed, as Hurwitz noted, ρ := 1

2
(1 + i+ j + k) is integral (N ρ = 1

and Tr ρ = 1) and R := R′ + Zρ is also an order of B strictly containing R′.
Moreover, R is maximal and hence its arithmetic is significantly simpler

than that of R′. Hurwitz showed, for example, that there is a left and right
division algorithm in R, from which it follows that every positive integer is a
sum of four squares.

Fix a prime p and let B be the quaternion algebra over Q ramified precisely
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at ∞ and p. Let R be a fixed maximal order in B. A right ideal I of R is a
lattice in B that is stable under right multiplication by R. Two right ideals
I and J are in the same class if J = bI with b ∈ B×. The set of right ideal
classes is finite; let n be its number. Chose a set of representatives {I1, . . . , In}
of the classes. (We should emphasize here that contrary to the commutative
setting there is no natural group structure on the set of classes.)

Consider the vector space V of formal linear combinations

n∑

i=1

ai [Ii], ai ∈ C

(here [I] denotes the class of I).
For each integer m there is an n×n matrix Bm acting on V . Pizer [P] gives

an efficient algorithm for computing these Brandt matrices: its coefficients are
given by the representation numbers of the norm form for certain quaternary
lattices in B.

The Brandt matrices commute with each other and are self-adjoint with
respect to the height pairing on V (see §1 and §2 of [G] for an account of
this.) From this it follows that there is basis of V consisting of simultaneous
eigenvectors of all Bm.

It follows from Eichler’s trace formula that there is a one to one corre-
spondence between Hecke eigenforms of weight 2 and level p (cf. [G, §5]) and
eigenvectors in V of all Brandt matrices (up to a constant multiple).

If f is the Hecke eigenform we let ef be the corresponding eigenvector (well
defined up to a constant). Then Bmef = amef where Tmf = amf and Tm is
the m-th Hecke operator.

3 Construction of g− and g+

Let ef be the eigenvector for the Brandt matrices for R corresponding to f as
in the last section. One can use linear algebra to find its coefficients

ef =
n∑

i=1

ai[Ii],

by computing the Brandt matrices, and from the knowledge of a few eigenval-
ues (i.e. Fourier coefficients) of f .

We will describe below the construction of certain generalized theta series
Θl∗([Ii]) corresponding to each ideal class [Ii], and then define

Θl∗(ef ) :=
n∑

i=1

ai Θl∗([Ii]) =
∞∑

n=1

cl∗(n) qn.

Here l∗ is a fundamental discriminant for which we will consider three cases:
l∗ = 1, which is Gross’s construction of g−; l∗ = l for an odd prime l 6= p
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such that l ≡ 1 (mod 4), which will generalize Gross’s construction of g−; and
l∗ = −l for an odd prime l 6= p such that l ≡ 3 (mod 4), which will give a
construction of g+.

Furthermore, for any fundamental discriminant D such that Dl∗ < 0, the
following formula holds

L(f, l∗, 1)L(f,D, 1) = ? κf
|cl∗(|D|)|2√
|Dl∗|

, (3.1)

where ? = 1 if p - D, ? = 2 if p | D, and κf := 〈f,f〉
〈ef ,ef〉 is a positive constant

independent of D or l∗. Here 〈ef , ef〉 is the height of ef , and 〈f, f〉 is the
Petersson norm of f (cf. §4 and §7 of [G].) For l = 1, this formula was proved
by Gross in [G, Proposition 13.5]. The proof of this formula for the case l 6= 1
will be given in a later publication.

Note that, as a corollary, we have Θl∗(ef ) 6= 0 if and only if L(f, l∗, 1) 6= 0,
and this happens for infinitely many l∗ > 0 and for infinitely many l∗ < 0, as
follows from [BFH].

3.1 Gross’s construction of Θ1

Let Ri := {b ∈ B : bIi ⊂ Ii} be the left order of Ii. The Ri are maximal
orders in B, and each conjugacy class of maximal orders has a representative
Ri for some i.

We let S0
i := {b ∈ Z+ 2Ri : Tr b = 0}, a ternary lattice, and define

Θ1([Ii]) :=
1

2

∑

b∈S0
i

qN b.

Then Θ1([Ii]) is a weight 3/2 modular form of level 4p and trivial character.

3.2 Weight functions and Θl

Fix an odd prime l 6= p. In order to generalize Gross’s method, we need to
construct certain weight functions ωl(Ii, ·) on S0

i with values in {0,±1}. There
is a choice of sign in the construction, and some care is needed to ensure that
the choice is consistent from one ideal to another. It will be the case that
ωl(Ii, b) = 0 unless l | N b, and thus we define a generalized theta series

Θl([Ii]) :=
1

2

∑

b∈S0
i

ωl(Ii, b)q
N b/l,

a modular form of weight 3/2 and level 4p with trivial character. In addition,
Θl([Ii]) is already a cusp form whenever l 6= 1, although it might be zero.
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Definition 3.1. Given a pair (L, v), where L is an integral Zl-lattice of rank
3 with l - detL, and v ∈ L is such that l | N v but v 6∈ l L, we define its weight
function ωl,v : L→ {0,±1} to be

ωl,v(v
′) :=





0 if l - N v′,

χl(〈v, v′〉) if l - 〈v, v′〉,
χl(k) if v′ − k v ∈ l L.

Here χl is the quadratic character of conductor l, and N v := 1
2
〈v, v〉.

This is well defined, because if v, v′ ∈ L are such that N v ≡ N v′ ≡
〈v, v′〉 ≡ 0 (mod l), then v and v′ must be collinear modulo l, since L is
unimodular. This means that, assuming v 6∈ l L, there is indeed a well defined
k ∈ Z/lZ such that v′ − k v ∈ l L.

Note that there are, for different choices of v, two different weight functions
for each L, opposite to each other; the definition above singles out the one for
which ωl,v(v) = +1.

We will apply the above definition to the ternary lattices S0
i (Zl) := S0

i ⊗Zl.
Fix a quaternion b0 ∈ S0 := {b ∈ Z+ 2R : Tr b = 0}, and such that l | N b0

but b0 6∈ lS0. For each Ii, find xi ∈ Ii such that l - ni := N xi/N Ii. Then xi
is a local generator of Ii, and bi := xi b0 x

−1
i ∈ S0

i (Zl). We finally set

ωl(Ii, b) := χl(ni)ωl,bi(b),

where ωl,bi is the weight function of the pair (S0
i (Zl), bi).

3.3 Odd weight functions and Θ−l

When l ≡ 3 (mod 4) the weight functions ωl(Ii, ·) are odd, since χl is odd.
Therefore, we will have Θl = 0. To address this problem, we will construct a
different kind of weight function ωp(Ii, ·), and then define

Θ−l([Ii]) :=
1

2

∑

b∈S0
i

ωp(Ii, b)ωl(Ii, b)q
N b/l,

which will be a modular form of weight 3/2, this time of level 4p2. Again,
Θ−l([Ii]) is a cusp form, which might be zero. Note that we could have used
the product of two odd weight functions ωl1 and ωl2 , but this construction
would only lead us to the same g−. By using the weight functions ωp we get a
construction of g+ instead.
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Definition 3.2. Given a triple (L, v, ψ) where L is an integral Zp-lattice of
rank 3 with level p and determinant p2 (i.e. L is Zp-equivalent to S0(Zp),)
v ∈ L is such that p - N v, and ψ : Z/pZ → C is a periodic function modulo
p, the weight function ωψ,v : L→ C is defined by

ωψ,v(v
′) := ψ(〈v, v′〉).

Clearly, the weight function ωψ,v will be odd if and only if ψ itself is odd.
From now on we assume that ψ is a fixed odd periodic function such that

|ψ(t)| = 1 for t 6≡ 0 (mod p). (3.2)

Now fix b0 ∈ S0 such that p - N b0. Find xi ∈ Ii such that p - N xi/N Ii;
since B is ramified at p, the maximal order at p is unique, and so bi :=
xi b0 x

−1
i ∈ S0(Zl) = S0

i (Zp). We define

ωp(Ii, b) := ωψ,bi(b),

to be the weight function for the triple (S0
i (Zp), bi, ψ). In practice, one can use

the same b0 and bi for the definitions of both ωl(Ii, ·) and ωp(Ii, ·).
Note that different choices of ψ will, in general, yield different forms

Θ−l([Ii]), but as long as (3.2) holds their coefficients will be the same up to a
constant of absolute value 1; thus formula (3.1) will not be affected. Moreover,
given two such odd periodic functions it is not difficult to produce another pe-
riodic function χ with the property that the ratio of the m-th coefficients of
the respective theta series will be χ(m).

The case when ψ is actually a character of conductor p is of particular
interest, since the generalized theta series Θ−l([Ii]) will be a modular form of
level 4p2 and character ψ1, where ψ1(m) =

(−1
m

)
ψ(m). From a computational

point of view, however, it will always be preferable to choose a real ψ, whose
values will be 0 or ±1, and so that the coefficients of Θ−l([Ii]) will be rational
integers. Only in case p ≡ 3 (mod 4) it is possible to satisfy both requirements
at the same time, by taking for ψ the quadratic character of conductor p.
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4 Examples

4.1 11A

Let f = f11A, the modular form of level 11, and consider B = B(−1,−11),
the quaternion algebra ramified precisely at ∞ and 11. A maximal order, and
representatives for its right ideals classes, are given by

R = I1 =

〈
1, i,

1 + j

2
,
i+ k

2

〉
with N I1 = 1,

I2 =

〈
2, 2i,

1 + 2i+ j

2
,
2 + 3i+ k

2

〉
with N I2 = 2.

By computing the Brandt matrices (see Rodrigues-Villegas paper in this vol-
ume or §6 of [G] for this example), we find a vector

ef = [I2]− [I1]

of height 〈ef , ef〉 = 5 corresponding to f . Since L(f, 1) ≈ 0.25384186, Gross’s
method works, and it’s easy to compute

Θ1(ef ) = Θ1([I2])−Θ1([I1]) = q3 − q4 − q11 − q12 + q15 + 2q16 +O(q20),

as the difference of two regular theta series corresponding to the ternary
quadratic forms (4.1) and (4.2).

4.1.1 Real twists in a case of rank 0

Let l = 3. One can compute L(f,−3, 1) ≈ 1.6844963, and thus expect Θ−3(ef )
to be nonzero. We can choose b0 = i + k ∈ S0 with norm 12, and let ψ = χ11

be the quadratic character of conductor 11.
Clearly we can take x1 = 1 and x2 = 2, so that n1 = 1, n2 = 2 and

b1 = b2 = i+ k. Bases for S0
1 and S0

2 are given by

S0
1 = 〈2i, j, i+ k〉 with b1 = (0, 0, 1),

S0
2 =

〈
4i, 2i+ j,

7i+ k

2

〉
with b2 = (−3/2, 0, 2).

The norm form in the given bases will be

N 1 (x1, x2, x3) = 4x2
1 + 11x2

2 + 12x2
3 + 4x1x3, (4.1)

N 2 (x1, x2, x3) = 16x2
1 + 15x2

2 + 15x2
3 + 14x2x3 + 28x1x3 + 16x1x2. (4.2)

This information is all that we need to compute Θ−3. As an example, we show
how to compute Θ−3([I1]). A simple calculation shows that

〈(x1, x2, x3), b1〉 = 4x1 + 24x3 ≡ x1 (mod 3),
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d c−3(d) L(f, d, 1) d c−3(d) L(f, d, 1) d c−3(d) L(f, d, 1)
1 1 0.253842 92 -5 0.661621 141 -10 2.137734
5 -5 2.838038 93 5 0.658054 152 -10 2.058929

12 -5 1.831946 97 5 0.644343 157 -15 4.558227
37 5 1.043284 104 10 2.489124 168 10 1.958432
53 10 3.486786 113 -5 0.596986 177 5 0.476998
56 10 3.392105 124 -5 0.569892 181 -15 4.245281
60 -5 0.819271 133 10 2.201088 185 -5 0.466571
69 15 6.875768 136 10 2.176676 188 -10 1.851332
89 -5 0.672680 137 -5 0.542179

Table 1: Coefficients of Θ−3(ef ) and central values for f = f11A

and thus ω3(I1, ·) can be computed by

ω3(I1, (x1, x2, x3)) =





0 if 3 - N 1 (x1, x2, x3),

χ3(x1) if x1 6≡ 0 (mod 3),

χ3(x3) otherwise.

Similarly, ω11(I1, ·) will be given by

ω11(I1, (x1, x2, x3)) = χ11(4x1 + 2x3).

Hence we compute

Θ−3([I1]) = −2q4 + 2q5 + 2q9 + 2q12 + 2q20 + 2q25 − 2q37 +O(q48).

In a similar way one can easily get

Θ−3([I2]) = q + q4 − 3q5 − 3q12 + 4q16 − 3q20 + 2q25 − 6q36 + 3q37 +O(q48).

Table 1 shows the values of c−3(d) and L(f, d, 1), where 0 < d < 200 is a
fundamental discriminant such that

(
d
11

)
= 1. The formula

L(f, d, 1) = k−3
c−3(d)2

√
d

is satisfied, where

k−3 =
1

5
· (f, f)

L(f,−3, 1)
√

3
= L(f, 1) ≈ 0.2538418608559106843377589233509...

Note that when
(
d
11

)
6= 1 it is trivial that c−3(d) = L(f, d, 1) = 0.
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4.2 37 A

Let f = f37A, the modular form of level 37 and rank 1, and consider
B = B(−2,−37), the quaternion algebra ramified precisely at ∞ and 37.
A maximal order, and representatives for its right ideal classes, are given by

R = I1 =

〈
1, i,

1 + i+ j

2
,
2 + 3i+ k

4

〉
with N I1 = 1,

I2 =

〈
2, 2i,

1 + 3i+ j

2
,
6 + 3i+ k

4

〉
with N I2 = 2,

I3 =

〈
4, 2i,

3 + 3i+ j

2
,
6 + i+ k

2

〉
with N I3 = 4.

By computing the Brandt matrices, we find a vector

ef =
[I3]− [I2]

2

of height 〈ef , ef〉 = 1/2 corresponding to f . Since L(f, 1) = 0 we know that
2 Θ1(ef ) = Θ1([I3]) − Θ1([I2]) = 0. Indeed, one checks that R2 and R3 are
conjugate, which explains the identity Θ1([I2]) = Θ1([I3]).

4.2.1 Imaginary twists in a case of rank 1

Let l = 5. One can compute L(f, 5, 1) ≈ 5.3548616, and thus we expect
Θ5(ef ) to be nonzero. We note that, by the same reason that the orders are
conjugate, we have Θ5([I3]) = −Θ5([I2]), except now there’s an extra sign,
ultimately coming from the fact that

(
37
5

)
= −1. Thus, Θ5(ef ) = Θ5([I3]). A

basis for S0
3 is given by

S0
3 =

〈
4i, 3i+ j,

3i+ 2j + k

4

〉
,

with the norm in this basis

N 3 (x1, x2, x3) = 32x2
1 + 55x2

2 + 15x2
3 + 46x2x3 + 12x1x3 + 48x1x2.

Choose b3 = (0, 0, 1), with norm 15. Then

〈(x1, x2, x3), b3〉 = 12x1 + 46x2 + 30x3 ≡ 2x1 + x2 (mod 5), (4.3)

so that

ω5(I3, (x1, x2, x3)) =





0 if 5 - N 3 (x1, x2, x3),

χ5(2x1 + x2) if 2x1 + x2 6≡ 0 (mod 5),

χ5(x3) otherwise.
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−d c5(d) L(f,−d, 1) −d c5(d) L(f,−d, 1) −d c5(d) L(f,−d, 1)

-3 1 2.830621 -95 0 0.000000 -139 0 0.000000
-4 1 2.451389 -104 0 0.000000 -148 -3 7.254107
-7 -1 1.853076 -107 0 0.000000 -151 -2 1.595930

-11 1 1.478243 -111 1 0.930702 -152 -2 1.590671
-40 2 3.100790 -115 -6 16.458713 -155 2 1.575203
-47 -1 0.715144 -120 -2 1.790242 -159 1 0.388816
-67 6 21.562911 -123 3 3.978618 -164 -1 0.382843
-71 1 0.581853 -127 1 0.435051 -184 0 0.000000
-83 -1 0.538150 -132 3 3.840589 -195 2 1.404381
-84 -1 0.534937 -136 4 6.726557

Table 2: Coefficients of Θ5(ef ) and central values for f = f37A

Table 2 shows the values of c5(d) and L(f,−d, 1), where −200 < −d < 0
is a fundamental discriminant such that

(−d
37

)
6= −1. The formula

L(f,−d, 1) = k5
c5(d)2

√
d
·





1 if
(−d

37

)
= +1,

2 if
(−d

37

)
= 0,

0 if
(−d

37

)
= −1,

is satisfied, where

k5 = 2 · (f, f)

L(f, 5, 1)
√

5
≈ 4.902778763973580121708449663733...

Note that in the case
(−d

37

)
= −1 it is trivial that c5(d) = L(f,−d, 1) = 0.

4.2.2 Real twists in a case of rank 1

Let l = 3, since L(f,−3, 1) ≈ 2.9934586. Keep b3 as above, and let ψ be the
odd periodic function modulo 37 such that

ψ(x) =

{
+1 if 1 6 x 6 18,

−1 if 19 6 x 6 36.

Using again (4.3), we have that

ω3(I1, (x1, x2, x3)) =





0 if 3 - N 1 (x1, x2, x3),

χ3(x2) if x2 6≡ 0 (mod 3),

χ3(3) otherwise.

and ω11(I1, ·) will be given by

ω37(I1, (x1, x2, x3)) = ψ(12x1 + 9x2 + 30x3).
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d c−3(d) L(f, d, 1) d c−3(d) L(f, d, 1) d c−3(d) L(f, d, 1)
5 1 5.354862 76 1 1.373493 133 -1 1.038263
8 1 4.233390 88 1 1.276415 140 -3 9.107764

13 -1 3.320944 89 -1 1.269224 156 -1 0.958674
17 1 2.904081 92 2 4.993434 161 -2 3.774681
24 -1 2.444149 93 2 4.966515 165 1 0.932162
29 2 8.893941 97 0 0.000000 168 -1 0.923801
56 -1 1.600071 105 1 1.168527 172 1 0.912996
57 1 1.585973 109 -1 1.146885 177 0 0.000000
60 -1 1.545815 113 0 0.000000 193 -1 0.861895
61 0 0.000000 124 0 0.000000
69 0 0.000000 129 1 1.054237

Table 3: Coefficients of Θ−3(ef ) and central values for f = f37A

Table 3 shows the values of c−3(d) and L(f, d, 1), where 0 < d < 200 is a
fundamental discriminant such that

(
d
37

)
= −1. The formula

L(f, d, 1) = k−3
c−3(d)2

√
d

is satisfied, where

k−3 = 2 · (f, f)

L(f,−3, 1)
√

3
≈ 11.97383458492783851932803991781...

Note that in the case
(
d
37

)
6= −1 it is trivial that c−3(d) = L(f, d, 1) = 0.

4.3 43A

Let f = f43A, the modular form of level 43 and rank 1. Let B = B(−1,−43),
the quaternion algebra ramified precisely at ∞ and 43. A maximal order, and
representatives for its right ideals classes, are given by

R = I1 =

〈
1, i,

1 + j

2
,
i+ k

2

〉
with N I1 = 1,

I2 =

〈
2, 2i,

1 + 2i+ j

2
,
2 + 3i+ k

2

〉
with N I2 = 2,

I3 =

〈
3, 3i,

1 + 2i+ j

2
,
2 + 5i+ k

2

〉
with N I3 = 3,

I4 =

〈
3, 3i,

1 + 4i+ j

2
,
4 + 5i+ k

2

〉
with N I4 = 3.

By computing the Brandt matrices, we find a vector

ef =
[I4]− [I3]

2
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−d c5(d) L(f,−d, 1) −d c5(d) L(f,−d, 1) −d c5(d) L(f,−d, 1)

-3 1 3.148135 -91 -1 0.571601 -151 -1 0.443737
-7 1 2.060938 -104 1 0.534684 -155 -1 0.437974
-8 -1 1.927831 -115 -3 4.576227 -159 1 0.432430

-19 2 5.003768 -116 -1 0.506273 -163 7 20.927447
-20 -1 1.219267 -119 -1 0.499851 -168 -2 1.682749
-39 -1 0.873136 -120 0 0.000000 -179 -1 0.407556
-43 2 6.652268 -123 -5 12.291402 -184 -3 3.617825
-51 1 0.763535 -131 0 0.000000 -191 0 0.000000
-55 1 0.735246 -132 3 4.271393 -199 0 0.000000
-71 0 0.000000 -136 -1 0.467568
-88 3 5.231366 -148 -4 7.171386

Table 4: Coefficients of Θ5(ef ) and central values for f = f43A

of height 〈ef , ef〉 = 1/2 corresponding to f .

4.3.1 Imaginary twists in a case of rank 1

We can use l = 5, since L(f, 5, 1) ≈ 4.8913446 is nonzero; again, we find
Θ5(ef ) = Θ5([I4]). Table 4 shows the values of c5(d) and L(f,−d, 1), where
−200 < −d < 0 is a fundamental discriminant such that

(−d
43

)
6= −1. The

formula

L(f,−d, 1) = k5
c5(d)2

√
d
·





1 if
(−d

43

)
= +1,

2 if
(−d

43

)
= 0,

0 if
(−d

43

)
= −1,

is satisfied, where

k5 = 2 · (f, f)

L(f, 5, 1)
√

5
≈ 5.452729672681734385570722785283...

Note that in the case
(−d

43

)
= −1 it is trivial that c5(d) = L(f,−d, 1) = 0.

4.3.2 Real twists in a case of rank 1

We can use l = 3, since L(f,−3, 1) ≈ 3.1481349, and let ψ = χ43 be the
quadratic character of conductor 43. Table 5 shows the values of c−3(d) and
L(f, d, 1), where 0 < d < 200 is a fundamental discriminant such that

(
d
43

)
=

−1. The formula

L(f, d, 1) = k−3
c−3(d)2

√
d

is satisfied, where

k−3 = 2 · (f, f)

L(f,−3, 1)
√

3
≈ 10.937379059935167648758735438779...

Note that in the case
(
d
43

)
6= −1 it is trivial that c−3(d) = L(f, d, 1) = 0.
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d c−3(d) L(f, d, 1) d c−3(d) L(f, d, 1) d c−3(d) L(f, d, 1)
5 1 4.891345 76 0 0.000000 137 2 3.737773
8 -1 3.866947 77 -3 11.217870 141 -2 3.684374

12 1 3.157349 85 1 1.186325 149 0 0.000000
28 -1 2.066970 88 -1 1.165929 156 1 0.875691
29 -1 2.031020 89 1 1.159360 157 2 3.491592
33 -1 1.903953 93 3 10.207380 161 -1 0.861986
37 2 7.192376 104 1 1.072498 168 -2 3.375348
61 1 1.400388 105 0 0.000000 177 -2 3.288415
65 -1 1.356615 113 -2 4.115608 184 1 0.806314
69 -1 1.316706 120 0 0.000000
73 1 1.280123 136 1 0.937873

Table 5: Coefficients of Θ−3(ef ) and central values for f = f43A

4.4 389A

Let f = f389A, the modular form of level 389 and rank 2. Let B =
B(−2,−389), the quaternion algebra ramified precisely at ∞ and 389. A
maximal order, with 33 ideal classes, is given by

R =

〈
1, i,

1 + i+ j

2
,
2 + 3i+ k

4

〉
.

There is a vector ef of height 〈ef , ef〉 = 5/2 corresponding to f .

4.4.1 Imaginary twists in a case of rank 2

We can use l = 5, since L(f, 5, 1) ≈ 8.9092552. We have omitted the 33 ideal
classes; however, the computation of Θl(ef ) involves only 14 distinct theta
series. In table 6 we give the value of ef and the coefficients of the norm form
N i and of bi on chosen bases of S0

i .
Each row in the table allows one to compute an individual theta series

hi(z) :=
1

2

∑

b∈Z3

w5(Ii, b)q
N i (b)/5.

The ternary form corresponding to a sextuple (A1, A2, A3, A23, A13, A12) is

N i (x1, x2, x3) = A1x
2
1 + A2x

2
2 + A3x

2
3 + A23x2x3 + A13x1x3 + A12x1x2,

and ω5(Ii, ·) is the weight function of the pair (Z3, bi). As an example, we show
how to compute h1(z). First, we have

N 1 (x1, x2, x3) = 15x2
1 + 107x2

2 + 416x2
3 − 100x2x3 − 8x1x3 − 14x1x2.

A simple calculation shows that

〈(x1, x2, x3), (2, 4, 0)〉 ≡ 4x1 + 3x2 + 4x3 (mod 5).
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i ai N i bi
1 1/2 15, 107, 416, -100, -8, -14 2, 4, 0
2 -1/2 15, 104, 415, 104, 2, 4 0, 4, 1
3 -1/2 23, 136, 203, 68, 2, 8 2, 1, 4
4 1/2 23, 72, 407, 72, 10, 20 1, 1, 0
5 -1/2 31, 51, 407, -46, -26, -10 1, 2, 0
6 1/2 31, 103, 204, 56, 20, 18 2, 0, 3
7 1/2 39, 128, 160, -116, -8, -36 1, 1, 4
8 -1/2 39, 40, 399, 40, 2, 4 1, 0, 1
9 1/2 40, 47, 399, 18, 40, 36 4, 3, 0
10 -1/2 47, 107, 135, 42, 22, 38 4, 3, 1
11 -1/2 56, 84, 139, 56, 4, 12 3, 1, 4
12 1/2 56, 92, 151, 76, 52, 44 4, 2, 3
13 1/2 71, 83, 132, -16, -12, -70 2, 3, 4
14 -1/2 71, 103, 124, -36, -64, -66 4, 0, 2

Table 6: Coefficients of the ternary forms and of bi

Thus, ω5 can be computed as

ω5(I1, (x1, x2, x3)) =





0 if 5 - N 1 (x1, x2, x3),

χ5(4x1 + 3x2 + 4x3) if 6≡ 0 (mod 5),

χ5(x2) otherwise,

and we have

h1(z) = q3 − q12 − q27 + q39 + q40 + q48 − q83 − 2q92 +O(q100).

Finally, we combine all of the theta series in

Θ5(ef ) =
14∑

i=1

aihi(z)

Table 7 shows the values of c5(d) and L(f,−d, 1), where 0 < −d < 200 is
a fundamental discriminant such that

( −d
389

)
6= +1. The formula

L(f,−d, 1) = k5
c5(d)2

√
d
·





1 if
( −d

389

)
= −1,

2 if
( −d

389

)
= 0,

0 if
( −d

389

)
= +1,

is satisfied, where

k5 =
2

5
· (f, f)

L(f, 5, 1)
√

5
≈ 7.886950806206592817689630792605...

Note that when
( −d

389

)
= +1 it is trivial that c5(d) = L(f,−d, 1) = 0.
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−d c5(d) L(f,−d, 1) −d c5(d) L(f,−d, 1) −d c5(d) L(f,−d, 1)

-3 1 4.553533 -83 -1 0.865705 -139 -1 0.668962
-8 -1 2.788458 -84 1 0.860537 -148 6 23.338921

-15 -1 2.036402 -88 -4 13.452028 -151 2 2.567324
-23 1 1.644543 -103 0 0.000000 -152 -1 0.639716
-31 1 1.416538 -104 -1 0.773379 -155 3 5.701456
-39 1 1.262923 -107 0 0.000000 -163 8 39.536232
-40 1 1.247036 -115 -1 0.735462 -167 -1 0.610311
-43 -3 10.824738 -116 -2 2.929140 -191 1 0.570680
-47 0 0.000000 -123 3 6.400282 -195 1 0.564796
-51 -2 4.417576 -131 1 0.689086 -199 -1 0.559091
-56 1 1.053938 -132 -2 2.745884
-71 1 0.936009 -136 -2 2.705202

Table 7: Coefficients of Θ5(ef ) and central values for f = f389A
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Examples of the Shimura
correspondence for level p2 and real

quadratic twists

Ariel Pacetti and Gonzalo Tornaŕıa

Abstract

We give examples of the Shimura correspondence for rational modu-
lar forms f of weight 2 and level p2, for primes p 6 19, computed as an
application of a method we introduced in [5]. Furthermore, we verify in
this examples a conjectural formula for the central values L(f,−pd, 1)
and, in case p ≡ 3 (mod 4), a formula for the central values L(f, d, 1)
corresponding to the real quadratic twists of f .

1 Introduction

Let f be a newform of weight 2. We let L(f, s) denote its Hecke L-series, and
for D a fundamental discriminant we define its twisted L-series as

L(f,D, s) := L
(
f ⊗

(
D
·
)
, s
)
,

where f⊗
(
D
·
)

is (the newform corresponding to) the twist of f by the quadratic
character n 7→

(
D
n

)
. Recall that L(f,D, s) is an entire function of the complex

plane with a functional equation relating the its values at s and 2 − s, its
central value being L(f,D, 1).

In the case of prime level p, a method due to Gross [3] constructs, provided
L(f, 1) 6= 0, a nonzero modular form Θf of weight 3/2 and level 4p which maps
to f under the Shimura correspondence [8]. By Waldspurger’s formula [11]
the Fourier coefficients of Θf are related to the central values L(f,−d, 1) for
imaginary fundamental discriminants −d < 0, and Gross gives an explicit
formula for such central values.

The authors have extended Gross’s method to the case of level p2 (under
a technical hypothesis, see §4, and cf. [7].) We show in [5] how to construct
two modular forms Θ+

f and Θ−f of weight 3/2 and level 4p2, with character

κp(n) :=
(
p
n

)
, mapping to f under the Shimura correspondence.

In this paper we outline the main ideas of our method, and conjecture a
formula relating the central values L(f,−pd, 1) for imaginary fundamental dis-
criminants −pd < 0, with the Fourier coefficients of Θ+

f and Θ−f . In particular,

such formula would imply that Θ+
f = Θ−f = 0 if and only if L(f, 1) = 0.
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When p ≡ 3 (mod 4), we apply this method and the conjectured formula
to the computation of the central values L(f, d, 1) for real fundamental dis-
criminants d > 0, giving an algorithm that is particularly well suited to the
case where f has level p. The proviso here would be that L(f,−p, 1) 6= 0.

Finally, we give examples of this algorithm applied to the rational modular
forms f49A, f11A, f121A, f121B, f121C, f121D, f17A, f289A, f19A, f361A, and f361B.
The routines used for these calculations, which will be made available in [1],
were written by the authors for the PARI/GP system [6].

More examples can be found among the data presented at the “Special
Week on Ranks of Elliptic Curves and Random Matrix Theory” held at the
Isaac Newton Institute, which includes the application of the latter algorithm
to the rational modular forms of level p ≡ 3 (mod 4), with p < 500 [9].

For a different approach to computing the central values for real quadratic
twists, which works only for prime level, see [4].

2 Quaternion algebras and Shimura correspon-

dence

Let a, b be negative integers and let H = H(a, b) be the definite quaternion
algebra over Q with basis {1, i , j , k = ij} where i 2 = a, j 2 = b, ij = −ji . For
x ∈ H, we denote by N x the reduced norm of x , i.e.

N x0 + x1i + x2j + x3k := x2
0 − ax2

1 − bx2
2 + abx2

3.

The norm of a lattice a ⊆ H is defined to be N a := gcd {N x : x ∈ a}.
An order in H is a (full rank) lattice R ⊆ H which is also a ring with

1 ∈ R. Since the determinant of the quadratic form N in the above basis is
16 (ab)2, the determinant of R is a rational square. Its positive square root
will be denoted by D(R).

We let Ĩ(R) be the set of left R-ideals, i.e. the lattices a ⊆ H such that
ap = Rpxp for every prime p, with xp ∈ H×p . An equivalence relation is defined

on Ĩ(R) where two left ideals a, b ∈ Ĩ(R) are in the same class if a = bx , for
some x ∈ H×; we write [a] for the class of a. The set of all left R-ideal classes,
which we denote by I(R), is known to be finite.

Let M(R) be the R-vector space with basis I(R), with the height pairing

〈[a], [b]〉 :=

{
1
2

#Rr(a)× if [a] = [b],

0 otherwise,

as an inner product. Note that I(R) is an orthogonal basis of this space.
For each integer m > 1 we define Hecke operators tm : M(R)→M(R) by

tm[a] :=
∑

[b]∈I(R)

Bm

(
[b], [a]

)
· [b],
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where Bm is the classical Brandt matrix

Bm

(
[a], [b]

)
:= #

{
c ∈ [a−1b] : N c = m, c integral

}
.

The Hecke operators tm, with gcd(m,D(R)) = 1, generate a commutative
ring T0 and thus, by the spectral theorem, M(R) has an orthogonal basis of
eigenvectors for T0. When f is a newform of weight 2, say f|T (m) = λmf , we
set

M(R)f := {v ∈M(R) : tmv = λmv for (m,D(R)) = 1},
to be the f -isotypical component of M(R).

2.1 Modular forms of weight 3/2

The discriminant of a quaternion x ∈ H is defined to be ∆ x := (x−x)2. This
is a quadratic form of rank 3 which we will use to construct modular forms of
weight 3/2.

Let R be an order in H. We define Ω(R) := gcd {∆ x : x ∈ R}, and note
that Q(x ) := −∆ x/Ω(R), in the ternary lattice R/Z, is a primitive, positive
definite ternary quadratic form. Its theta series,

Θ(R) :=
1

2

∑

x∈R/Z
qQ(x),

depends only on the Z-equivalence class of the ternary quadratic form Q; in
the examples such a ternary quadratic form will be given by its coefficients a1,
a2, a3, a23, a13, a12, meaning that in some basis of R/Z,

Q(X1, X2, X3) = a1X
2
1 +a2X

2
2 +a3X

2
3 +a23X2X3 +a13X1X3 +a12X1X2. (2.1)

We will also write Q to stand for its theta series.
Now let a ∈ Ĩ(R). We set Θ([a]) := Θ(Rr(a)), and extend by linearity to all

of M(R). Note that the ternary forms corresponding to R and Rr(a) are in the
same genus since a, being principal, induces local isometries by conjugation.
In particular, Ω(R) = Ω(Rr(a)).

Note that Θ(v) is in the space M3/2(N,κ) of modular forms of weight 3/2,

level N = 4D(R)
Ω(R)

, and character κ =
(

Ω(R)
·

)
. Moreover,

Proposition 2.1. The map Θ is Hecke-linear, i.e.

Θ(v)|T (m2) = Θ(tmv),

for any m > 1 such that (m, 2 D(R)) = 1.

This means that for a newform f of weight 2, any nonzero modular form
in Θ

(
M(R)f

)
will map to f under the Shimura correspondence.
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3 Gross’s formula for level p

Let f be a newform of weight 2 and prime level p, and let O be a maximal
order in the quaternion algebra ramified at p and ∞. It follows from Eichler’s
trace formula [2] that dim M(O)f = 1. Thus ef ∈M(O)f is well defined up to
a constant; we write

Θf := Θ(ef ) =
∑

d>1

cf (d)qd.

We also define the Peterson norm of f to be

〈f, f〉 := 8π2

∫

Γ0(N)\h
|f(z)|2dx dy

Theorem 3.1 (Gross [3, Proposition 13.5, p. 179]). Let −d < 0 be a
fundamental discriminant. Then

L(f,−d, 1)L(f, 1) = ?
〈f, f〉√

d

cf (d)2

〈ef , ef〉
,

where ? = 1 if p - d, ? = 2 if p | d.

4 On certain non-maximal orders and level p2

The aim here is to give a formula like the one in Theorem 3.1 that applies also
to modular forms of level p2. Keep the notation of the previous section, except
f is now a newform of weight 2 and level p or p2. Let Õ ⊆ O be the unique
suborder of index p in O, namely

Õ := {x ∈ O : p | ∆ x}.

We have the following result due to Pizer ([7, Theorem 8.2, p.223]) :

dim M(Õ)f =





2 if f is not the twist of a level p form,

1 if f is a level p form or the quadratic twist of a level p form,

0 otherwise.

In what follows we will assume that f is not in the last case, i.e. M(Õ)f 6= 0.

Clearly, D(Õ) = p2, but Ω(Õ) = p, and we have Θ
(
M(Õ)

)
⊆ M3/2(4p,κp).

Thus Θ
(
M(Õ)f

)
= 0 unless f is a level p form.

We now investigate suborders of index p in Õ. One can prove that any
such order contains Z + pO; conversely, any of the p + 1 lattices O′ such that
Z+ pO ( O′ ( Õ is an order. Let x ∈ O′ such that x 6∈ Z+ pO. Then

σ :=

(
∆ x/p

p

)
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is well defined and nonzero, and we call σ the sign of O′. The orders O′ split
in two local conjugacy classes: p+1

2
of sign +, and p+1

2
of sign −.

The space M(O′) depends only on the sign of O′. Thus, we fix O+ and
O− to be two such orders, with signs + and − respectively. In what follows σ
will denote either + or −. Note that D(Oσ) = p3, Ω(Oσ) = p and so we have
Hecke-linear maps

Θ : M(Oσ)→M3/2(4p2,κp).
The space M(Oσ) is too big for our purposes, since it represents weight 2 mod-
ular forms of level p3; indeed dim M(Oσ) = O(p3), compared to dim M(Õ) =
O(p2).

For a ∈ Ĩ(Õ) the Oσ-subideals of a are the b ∈ Ĩ(Oσ) such that b ⊆ a and
N b = N a. It can be proved that the number of Oσ-subideals of a is exactly
p and, moreover, that they all have the same right order. Thus, we can define
Hecke-linear maps

Θσ : M(Õ)→M3/2(4p2,κp),

given, for [a] ∈ I(Õ), by
Θσ([a]) := Θ([b]),

where b is any Oσ-subideal of a.
If Θσ(M(Õ)f ) = 0, we let eσf to be any nonzero vector in M(Õ)f . Otherwise,

it follows from the strong multiplicity one theorem of Ueda ([10, Theorem 3.11,
p.181]) that dim Θσ(M(Õ)f ) = 1, and thus there is, up to a constant, a unique
eσf ∈M(Õ)f orthogonal to ker Θσ. We write

Θσ
f := Θσ(eσf ) =

∑

( dp)=σ

cf (d)qd.

Let us also introduce the rational constant

αf :=
1

2
·





1 if f is not the twist of a level p form,
p
p−1

if f is the quadratic twist of a level p form,

p+ 1 if f is a level p form.

Conjecture 1. Let d be an integer such that −pd < 0 is a fundamental dis-

criminant, and such that
(
d
p

)
= σ. Then

L(f,−pd, 1)L(f, 1) = αf
〈f, f〉√
pd

cf (d)2

〈eσf , eσf 〉
.

5 An Algorithm for the Real Quadratic Twists

Assume now that p ≡ 3 (mod 4), and let f be as before a newform of weight
2 and level p or p2. Let f ∗ be the twist of f by the quadratic character of
conductor p. For any positive fundamental discriminant d, we have

L(f, d, s) = L(f ∗,−pd, s).
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Thus, the formula of conjecture 1 would be able to compute the central values
of L(f, d, s) for positive fundamental discriminants d prime to p, provided that
L(f ∗, 1) = L(f,−p, 1) 6= 0.

The algorithm consists of computing the Brandt matrices for Õ and finding
the eigenspace M(Õ)f

∗
. When f has level p there is a better algorithm for

computing M(Õ)f
∗
, by exploiting the two linear maps

• ψ : M(O)→M(Õ) given for a ∈ Ĩ(O) by

ψ([a]) =
∑

b subideal

[b],

where the sum is over all Õ-subideals of a, i.e. the ideals b ∈ Ĩ(Õ)
such that b ⊆ a and N b = N a. This map commutes with the Hecke
operators, and thus

M(Õ)f = ψ(M(O)f ).

• ϕ : M(Õ)→M(Õ), given, for b ∈ Ĩ(Õ) by

ϕ([b]) = χ(b)[b] for b ∈ Ĩ(Õ),

where χ(b) is the sign of b (namely χ(b) :=
(

N(x)/N(b)
p

)
for x ∈ b such

that p - (N(x)/N(b)), see [7, Proposition 5.1]). This map corresponds
to twisting by the quadratic character of conductor p; hence

M(Õ)f
∗

= ϕ(M(Õ)f ).

Thus, it will be enough to compute the Brandt matrices for O to find
M(O)f , and M(Õ)f

∗
= ϕ(ψ(M(O)f )). This is a big improvement since

dim M(O) = O(p), while dim M(Õ) = O(p2).

6 Example: level 72

Let H = H(−1,−7), the quaternion algebra ramified precisely at ∞ and 7. A
maximal order, having a unique left ideal class, is given by

O = a1 =

〈
1, i,

1 + j

2
,
i+ k

2

〉
.

Its index p suborder is given by Õ =

〈
1, 7i,

1 + j

2
,
7i+ k

2

〉
; inequivalent Õ-

subideals for the O-ideal are show in Table 6.1.
We fix two index p suborders of Õ

O+ =

〈
1, 7i,

1 + j

2
,
7i+ 7k

2

〉
,

O− =

〈
1, 7i,

1 + 7j

2
,
1 + 7i+ 5j + k

2

〉
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O-ideals Õ-subideals χ + genus − genus

a1 b1,1 =
〈
1, 7i, 1+j

2
, 7i+k

2

〉
+ Q+

1 Q−1
b1,2 =

〈
7, 1 + i, 7+j

2
, 8+i+k

2

〉
+ Q+

2 Q−2
b1,3 =

〈
7, 3 + i, 7+j

2
, 10+i+k

2

〉
− Q+

3 Q−2
b1,4 =

〈
7, 5 + i, 7+j

2
, 12+i+k

2

〉
− Q+

3 Q−1

Table 6.1: Maps ΘO+ and ΘO− from the Õ-Ideals to ternary quadratic forms
in the + and − genus respectively, level 72.

a1 a2 a3 a23 a13 a12

Q+
1 1, 28, 56, −28, 0, 0

Q+
2 4, 8, 49, 0, 0, −4

Q+
3 8, 9, 25, 2, 4, 8

Q−1 12, 12, 13, −8, −8, −4
Q−2 5, 17, 17, 6, 2, 2

Table 6.2: Coefficients of ternary quadratic forms, level 72.

in the + and − genus respectively. Table 6.1 shows the maps from Õ-ideals to
ternary quadratic forms of level 72 in the + genus and in the− genus, computed
via O+- and O−-subideals respectively. The actual coefficients of the ternary
quadratic forms are given in Table 6.2, with the notation as in (2.1).

6.1 f49A

By computing the Brandt matrices for Õ, we find the space M(Õ)f49A of di-
mension 2, spanned by e+

f49A
= [b1,1]− [b1,2] and

e−f49A
=

[b1,1]− [b1,2]− [b1,3] + [b1,4]

2
,

with heights
〈
e+
f49A

, e+
f49A

〉
= 2

〈
e−f49A

, e−f49A

〉
= 2. Using Table 6.1, we see that

Θ+
f49A

= Q+
1 −Q+

2 ,

and

Θ−f49A
= Q−1 −Q−2 .

Table 6.3 shows the values of cf49A
(d) and L(f49A,−7d, 1) = L(f49A, d, 1), where

0 < d < 200 is a fundamental discriminant such that 7 - d. The formula

L(f49A,−7d, 1) = L(f49A, d, 1) = kf49A

cf49A
(d)2

√
d
·
{

1 if
(
d
7

)
= +1

2 if
(
d
7

)
= −1
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d cf49A
(d) L(f49A, d, 1) d cf49A

(d) L(f49A, d, 1)

1 1 0.966656 109 2 0.370355
8 -2 1.367058 113 -4 1.454965

29 2 0.718014 120 4 1.411891
37 2 0.635669 137 2 0.330348
44 0 0.000000 141 -4 1.302514
53 0 0.000000 149 0 0.000000
57 0 0.000000 156 4 1.238311
60 4 1.996716 165 -4 1.204065
65 -2 0.479596 172 0 0.000000
85 -2 0.419394 177 -8 4.650131
88 -4 1.648734 184 -4 1.140205
92 4 1.612493 193 0 0.000000
93 -4 1.603801 197 0 0.000000

d cf49A
(d) L(f49A, d, 1) d cf49A

(d) L(f49A, d, 1)

5 -1 0.864603 97 -1 0.196298
12 2 2.232396 101 -1 0.192372
13 1 0.536204 104 4 3.033229
17 1 0.468897 124 -4 2.777864
24 -2 1.578542 129 4 2.723498
33 -2 1.346185 136 2 0.663120
40 0 0.000000 145 2 0.642211
41 1 0.301933 152 -2 0.627249
61 1 0.247535 157 -3 1.388656
69 -2 0.930974 173 1 0.146987
73 -3 2.036493 181 1 0.143702
76 -2 0.887064 185 -4 2.274238
89 3 1.844376 188 0 0.000000

Table 6.3: Coefficients of Θ+
f49A

(top), Θ−f49A
(bottom), and central values for

f49A
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is satisfied, where

kf49A
=

1

4
· 〈f49A, f49A〉
L(f49A, 1)

√
7

= 0.9666558528084057733665384189 = L(f49A, 1).

7 Example: level 112

Let H = H(−1,−11), the quaternion algebra ramified precisely at ∞ and 11.
A maximal order, and representatives for its left ideals classes, are given by

O = a1 =

〈
1, i,

1 + j

2
,
i+ k

2

〉
,

a2 =

〈
2, 2i,

3 + 2i+ j

2
,
2 + 3i+ k

2

〉
.

Its index p suborder is given by

Õ =

〈
1, 11i,

1 + j

2
,
11i+ k

2

〉
;

inequivalent Õ-subideals for each O-ideal are show in Table 7.1.
We fix two index p suborders of Õ

O+ =

〈
1, 11i,

1 + j

2
,
11i+ 11k

2

〉
,

O− =

〈
1, 11i,

1 + 11j

2
,
1 + 11i+ j + k

2

〉

in the + and − genus respectively. Table 7.1 shows the maps from Õ-ideals
to ternary quadratic forms of level 112 in the + genus and in the − genus,
computed via O+- and O−-subideals respectively. The actual coefficients of the
ternary quadratic forms are given in Table 7.2, with the notation as in (2.1).

7.1 f11A

By computing the Brandt matrices for O, we find the space M(Õ)f11A =
ψÕ

(
M(O)f11A

)
of dimension 1, spanned by

e+
f11A

= e−f11A
= ψÕ

(
[a1]− [a2]

2

)
,

with heights
〈
e+
f11A

, e+
f11A

〉
=
〈
e−f11A

, e−f11A

〉
= 15. Using Table 7.1, we see that

Θ+
f11A

= Q+
1 + 2Q+

2 + 2Q+
3 +Q+

4 − 3Q+
5 − 3Q+

6 ,
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O-ideals Õ-subideals χ + genus − genus

a1 b1,1 =
〈
1, 11i, 1+j

2
, 11i+k

2

〉
+ Q+

1 Q−1
b1,2 =

〈
11, 5 + i, 11+j

2
, 16+i+k

2

〉
+ Q+

2 Q−2
b1,3 =

〈
11, 9 + i, 11+j

2
, 20+i+k

2

〉
+ Q+

2 Q−3
b1,4 =

〈
11, 4 + i, 11+j

2
, 4+i+k

2

〉
− Q+

3 Q−3
b1,5 =

〈
11, 10 + i, 11+j

2
, 10+i+k

2

〉
− Q+

4 Q−1
b1,6 =

〈
11, 3 + i, 11+j

2
, 14+i+k

2

〉
− Q+

3 Q−2
a2 b2,1 =

〈
22, 14 + 2i, 3+2i+j

2
, 10+3i+k

2

〉
+ Q+

5 Q−4
b2,2 =

〈
22, 8 + 2i, 19+2i+j

2
, 34+3i+k

2

〉
+ Q+

5 Q−4
b2,3 =

〈
22, 12 + 2i, 23+2i+j

2
, 18+3i+k

2

〉
− Q+

6 Q−4
b2,4 =

〈
2, 22i, 3+22i+j

2
, 2+11i+k

2

〉
− Q+

6 Q−4

Table 7.1: Maps ΘO+ and ΘO− from the Õ-Ideals to ternary quadratic forms
in the + and − genus respectively, level 112.

a1 a2 a3 a23 a13 a12

Q+
1 1, 44, 132, −44, 0, 0

Q+
2 16, 16, 25, −4, −4, −12

Q+
3 5, 36, 36, 28, 4, 4

Q+
4 4, 12, 121, 0, 0, −4

Q+
5 5, 9, 124, −8, −4, −2

Q+
6 4, 33, 45, −22, −4, 0

Q−1 8, 13, 61, 2, 4, 8
Q−2 13, 21, 21, −2, −6, −6
Q−3 17, 21, 21, −2, −14, −14
Q−4 13, 21, 24, −16, −4, −6

Table 7.2: Coefficients of ternary quadratic forms, level 112.
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and

Θ−f11A
= 2Q−1 + 2Q−2 + 2Q−3 − 6Q−4 .

Table 7.3 shows the values of cf11A
(d) and L(f11A,−11d, 1) = L(f121D, d, 1),

where 0 < d < 200 is a fundamental discriminant such that 11 - d. The
formula

L(f11A,−11d, 1) = L(f121D, d, 1) = kf11A

cf11A
(d)2

√
d

is satisfied, where

kf11A
=

2

5
· 〈f11A, f11A〉
L(f11A, 1)

√
11

= 1.759399038662040141251585974 = L(f121D, 1).

7.2 f121A

By computing the Brandt matrices for Õ, we find the space M(Õ)f121A of di-
mension 2, spanned by

e+
f121A

=
2[b1,1]− [b1,2]− [b1,3] + [b1,4]− 2[b1,5] + [b1,6]

2
,

and

e−f121A
=

[b1,2]− [b1,3]− [b1,4] + [b1,6]

2
,

with heights
〈
e+
f121A

, e+
f121A

〉
= 3

〈
e−f121A

, e−f121A

〉
= 3. Using Table 7.1, we see that

Θ+
f121A

= Q+
1 −Q+

2 +Q+
3 −Q+

4 ,

and

Θ−f121A
= Q−2 −Q−3 .

Table 7.4 shows the values of cf121A
(d) and L(f121A,−11d, 1) = L(f121C, d, 1),

where 0 < d < 200 is a fundamental discriminant such that 11 - d. The formula

L(f121A,−11d, 1) = L(f121C, d, 1) = kf121A

cf121A
(d)2

√
d
·
{

1 if
(
d
11

)
= +1

3 if
(
d
11

)
= −1

is satisfied, where

kf121A
=

1

6
· 〈f121A, f121A〉
L(f121A, 1)

√
11

= 1.666156920394216089937692029 = L(f121C, 1).



300 A. Pacetti and G. Tornaŕıa

d cf121D
(d) L(f121D, d, 1) d cf121D

(d) L(f121D, d, 1)

1 1 1.759399 113 -1 0.165510
5 -1 0.786827 124 3 1.421988

12 -1 0.507895 133 2 0.610237
37 1 0.289243 136 -2 0.603469
53 -2 0.966688 137 -1 0.150316
56 -2 0.940438 141 2 0.592673
60 3 2.044237 152 -2 0.570824
69 -1 0.211807 157 1 0.140415
89 3 1.678463 168 -2 0.542962
92 -1 0.183430 177 -7 6.479982
93 1 0.182441 181 1 0.130775
97 -3 1.607759 185 3 1.164182

104 2 0.690093 188 2 0.513269

d cf121D
(d) L(f121D, d, 1) d cf121D

(d) L(f121D, d, 1)

8 2 2.488166 101 2 0.700267
13 0 0.000000 105 -2 0.686799
17 2 1.706868 109 -2 0.674079
21 2 1.535729 120 -2 0.642442
24 -2 1.436543 129 2 0.619626
28 -2 1.329981 140 -2 0.594785
29 0 0.000000 145 -4 2.337762
40 2 1.112742 149 2 0.576542
41 -4 4.396351 156 -4 2.253835
57 4 3.728610 161 -2 0.554640
61 0 0.000000 172 2 0.536612
65 4 3.491625 173 2 0.535059
73 0 0.000000 184 -2 0.518818
76 0 0.000000 193 4 2.026309
85 -2 0.763334 197 -2 0.501408

Table 7.3: Coefficients of Θ+
f11A

(top), Θ−f11A
(bottom), and central values for

f121D
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d cf121C
(d) L(f121C, d, 1) d cf121C

(d) L(f121C, d, 1)

1 1 1.666157 113 1 0.156739
5 1 0.745128 124 -2 0.598501

12 -2 1.923912 133 -2 0.577897
37 -1 0.273915 136 4 2.285948
53 1 0.228864 137 -2 0.569398
56 -2 0.890598 141 2 0.561263
60 -2 0.860400 152 2 0.540573
69 0 0.000000 157 0 0.000000
89 1 0.176612 168 4 2.056749
92 -2 0.694835 177 2 0.500944
93 2 0.691090 181 -3 1.114600
97 -1 0.169173 185 1 0.122498

104 -2 0.653521 188 2 0.486068

d cf121C
(d) L(f121C, d, 1) d cf121C

(d) L(f121C, d, 1)

8 0 0.000000 101 0 0.000000
13 1 1.386326 105 0 0.000000
17 -1 1.212307 109 1 0.478767
21 0 0.000000 120 2 1.825183
24 -2 4.081234 129 -2 1.760363
28 2 3.778489 140 -2 1.689792
29 -1 0.928193 145 -1 0.415100
40 2 3.161310 149 1 0.409491
41 1 0.780630 156 2 1.600792
57 2 2.648255 161 2 1.575739
61 -2 2.559954 172 0 0.000000
65 1 0.619984 173 0 0.000000
73 -2 2.340107 184 2 1.473969
76 -2 2.293456 193 1 0.359798
85 1 0.542160 197 -1 0.356126

Table 7.4: Coefficients of Θ+
f121A

(top), Θ−f121A
(bottom), and central values for

f121C
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7.3 f121B

By computing the Brandt matrices for Õ, we find the space M(Õ)f121B of di-
mension 2. Using Table 7.1, we can check that

ΘO+

(
M(Õ)f121B

)
= ΘO−

(
M(Õ)f121B

)
= 0,

which is expected since L(f121B, 1) = 0.

7.4 f121C

We readily find the space M(Õ)f121C = ϕ
(
M(Õ)f121A

)
of dimension 2, spanned

by

e+
f121C

= e−f121C
=

2[b1,1]− [b1,2]− [b1,3]− [b1,4] + 2[b1,5]− [b1,6]

2
,

and

[b1,2]− [b1,3] + [b1,4]− [b1,6],

with heights
〈
e+
f121C

, e+
f121C

〉
=
〈
e−f121C

, e−f121C

〉
= 3. Using Table 7.1, we see that

Θ+
f121C

= Q+
1 −Q+

2 −Q+
3 +Q+

4 ,

and

Θ−f121C
= 2Q−1 −Q−2 −Q−3 .

Table 7.5 shows the values of cf121C
(d) and L(f121C,−11d, 1) = L(f121A, d, 1),

where 0 < d < 200 is a fundamental discriminant such that 11 - d. The formula

L(f121C,−11d, 1) = L(f121A, d, 1) = kf121C

cf121C
(d)2

√
d

is satisfied, where

kf121C
=

1

6
· 〈f121C, f121C〉
L(f121C, 1)

√
11

= 1.019794861782916556837117278 = L(f121A, 1).
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d cf121A
(d) L(f121A, d, 1) d cf121A

(d) L(f121A, d, 1)

1 1 1.019795 113 -1 0.095934
5 -1 0.456066 124 -6 3.296890

12 2 1.177558 133 2 0.353710
37 -5 4.191331 136 -2 0.349787
53 1 0.140080 137 2 0.348508
56 -2 0.545103 141 2 0.343529
60 6 4.739578 152 -2 0.330865
69 -4 1.964302 157 4 1.302216
89 -3 0.972882 168 4 1.258862
92 2 0.425284 177 2 0.306610
93 -2 0.422991 181 1 0.075801
97 -3 0.931900 185 3 0.674791

104 -4 1.599986 188 2 0.297505

d cf121A
(d) L(f121A, d, 1) d cf121A

(d) L(f121A, d, 1)

8 2 1.442208 101 2 0.405894
13 3 2.545562 105 4 1.592349
17 -1 0.247337 109 1 0.097679
21 -4 3.560600 120 -2 0.372376
24 -2 0.832659 129 2 0.359152
28 -2 0.770892 140 -2 0.344754
29 3 1.704340 145 5 2.117234
40 -4 2.579900 149 -1 0.083545
41 -1 0.159265 156 2 0.326596
57 -2 0.540301 161 -2 0.321484
61 0 0.000000 172 8 4.976552
65 1 0.126490 173 2 0.310134
73 0 0.000000 184 10 7.518027
76 6 4.211226 193 -5 1.835161
85 -5 2.765307 197 1 0.072657

Table 7.5: Coefficients of Θ+
f121C

(top), Θ−f121C
(bottom), and central values for

f121A
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d cf11A
(d) L(f11A, d, 1) d cf11A

(d) L(f11A, d, 1)

1 1 0.253842 113 -5 0.596986
5 -5 2.838038 124 -5 0.569892

12 -5 1.831946 133 10 2.201088
37 5 1.043284 136 10 2.176676
53 10 3.486786 137 -5 0.542179
56 10 3.392105 141 -10 2.137734
60 -5 0.819271 152 -10 2.058929
69 15 6.875768 157 -15 4.558227
89 -5 0.672680 168 10 1.958432
92 -5 0.661621 177 5 0.476998
93 5 0.658054 181 -15 4.245281
97 5 0.644343 185 -5 0.466571

104 10 2.489124 188 -10 1.851332

Table 7.6: Coefficients of Θ+
f121D

and central values for f11A

7.5 f121D

We readily find the space M(Õ)f121D = ϕ
(
M(Õ)f11A

)
of dimension 1, spanned

by

e+
f121D

= ϕ ◦ ψÕ

(
[a1]− [a2]

2

)
,

with height
〈
e+
f121D

, e+
f121D

〉
= 15. Using Table 7.1, we see that

Θ+
f121D

= Q+
1 + 2Q+

2 − 2Q+
3 −Q+

4 − 3Q+
5 + 3Q+

6 ;

on the other hand ΘO−

(
M(Õ)f121D

)
= 0, which is expected since ε(f11A) = +1.

Table 7.6 shows the values of cf121D
(d) and L(f121D,−11d, 1) = L(f11A, d, 1),

where 0 < d < 200 is a fundamental discriminant such that
(
d
11

)
= +1. The

formula

L(f121D,−11d, 1) = L(f11A, d, 1) = kf121D

cf121D
(d)2

√
d

is satisfied, where

kf121D
=

11

300
· 〈f121D, f121D〉
L(f121D, 1)

√
11

= 0.2538418608559106843377589233 = L(f11A, 1).
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8 Example: level 172

Let H = H(−17,−3), the quaternion algebra ramified precisely at ∞ and 17.
A maximal order, and representatives for its left ideals classes, are given by

O = a1 =

〈
1, i,

1 + j

2
,
3i+ 2j + k

6

〉
,

a2 =

〈
2, 2i,

3 + 2i+ j

2
,
3i+ 2j + k

6

〉
.

Its index p suborder is given by Õ =

〈
1, i,

1 + 17j

2
,
3 + 3i+ 17j + k

6

〉
; inequiv-

alent Õ-subideals for each O-ideal are show in Table 8.1.
We fix two index p suborders of Õ

O+ =

〈
1, 17i,

1 + 17j

2
,
3 + 33i+ 17j + k

6

〉
,

O− =

〈
1, 17i,

1 + 17j

2
,
3 + 99i+ 17j + k

6

〉

in the + and − genus respectively. Table 8.1 shows the maps from Õ-ideals
to ternary quadratic forms of level 172 in the + genus and in the − genus,
computed via O+- and O−-subideals respectively. The actual coefficients of the
ternary quadratic forms are given in Table 8.2, with the notation as in (2.1).

8.1 f17A

By computing the Brandt matrices for O, we find the space M(Õ)f17A =
ψÕ

(
M(O)f17A

)
of dimension 1, spanned by

e+
f17A

= e−f17A
= ψÕ

(
[a1]− [a2]

2

)
,

with heights
〈
e+
f17A

, e+
f17A

〉
=
〈
e−f17A

, e−f17A

〉
= 18. Using Table 8.1, we see that

Θ+
f17A

= 3Q+
1 + 6Q+

2 −Q+
3 − 2Q+

4 − 2Q+
5 − 2Q+

6 − 2Q+
7 ,

and

Θ−f17A
= 3Q−1 + 6Q−2 − 2Q−3 − 2Q−4 − 2Q−5 − 2Q−6 −Q−7 .

Table 8.3 shows the values of cf17A
(d) and L(f17A,−17d, 1) = L(f289A,−d, 1),

where 0 > −d > −200 is a fundamental discriminant such that 17 - d. The
formula

L(f17A,−17d, 1) = L(f289A,−d, 1) = kf17A

cf17A
(d)2

√
d
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O-ideals Õ-subideals χ + genus − genus

a1 b1,1 =
〈
17, i, 1+j

2
, 36+3i+2j+k

6

〉
+ Q+

1 Q−1
b1,2 =

〈
17, i, 25+j

2
, 84+3i+2j+k

6

〉
+ Q+

2 Q−2
b1,3 =

〈
17, i, 21+j

2
, 42+3i+2j+k

6

〉
+ Q+

2 Q−2
b1,4 =

〈
17, i, 31+j

2
, 96+3i+2j+k

6

〉
− Q+

1 Q−1
b1,5 =

〈
17, i, 23+j

2
, 12+3i+2j+k

6

〉
− Q+

2 Q−2
b1,6 =

〈
17, i, 29+j

2
, 24+3i+2j+k

6

〉
− Q+

2 Q−2
a2 b2,1 =

〈
2, 2i, 3+2i+17j

2
, 9+9i+17j+k

6

〉
+ Q+

3 Q−3
b2,2 =

〈
34, 2i, 55+2i+j

2
, 144+3i+2j+k

6

〉
+ Q+

4 Q−4
b2,3 =

〈
34, 2i, 59+2i+j

2
, 84+3i+2j+k

6

〉
+ Q+

5 Q−4
b2,4 =

〈
34, 2i, 35+2i+j

2
, 36+3i+2j+k

6

〉
+ Q+

6 Q−3
b2,5 =

〈
34, 2i, 7+2i+j

2
, 48+3i+2j+k

6

〉
+ Q+

7 Q−5
b2,6 =

〈
34, 2i, 27+2i+j

2
, 156+3i+2j+k

6

〉
+ Q+

7 Q−6
b2,7 =

〈
34, 2i, 67+2i+j

2
, 168+3i+2j+k

6

〉
+ Q+

6 Q−7
b2,8 =

〈
34, 2i, 43+2i+j

2
, 120+3i+2j+k

6

〉
+ Q+

5 Q−6
b2,9 =

〈
34, 2i, 47+2i+j

2
, 60+3i+2j+k

6

〉
+ Q+

4 Q−5
b2,10 =

〈
34, 2i, 51+2i+j

2
, 3i+2j+k

6

〉
− Q+

3 Q−3
b2,11 =

〈
34, 2i, 63+2i+j

2
, 24+3i+2j+k

6

〉
− Q+

4 Q−4
b2,12 =

〈
34, 2i, 23+2i+j

2
, 12+3i+2j+k

6

〉
− Q+

5 Q−4
b2,13 =

〈
34, 2i, 31+2i+j

2
, 96+3i+2j+k

6

〉
− Q+

6 Q−3
b2,14 =

〈
34, 2i, 19+2i+j

2
, 72+3i+2j+k

6

〉
− Q+

7 Q−5
b2,15 =

〈
34, 2i, 15+2i+j

2
, 132+3i+2j+k

6

〉
− Q+

7 Q−6
b2,16 =

〈
34, 2i, 3+2i+j

2
, 108+3i+2j+k

6

〉
− Q+

6 Q−7
b2,17 =

〈
34, 2i, 11+2i+j

2
, 192+3i+2j+k

6

〉
− Q+

5 Q−6
b2,18 =

〈
34, 2i, 39+2i+j

2
, 180+3i+2j+k

6

〉
− Q+

4 Q−5

Table 8.1: Maps ΘO+ and ΘO− from the Õ-Ideals to ternary quadratic forms
in the + and − genus respectively, level 172.
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a1 a2 a3 a23 a13 a12

Q+
1 4, 51, 103, −34, −4, 0

Q+
2 15, 32, 47, 24, 10, 4

Q+
3 4, 52, 103, 36, 4, 4

Q+
4 15, 35, 47, −18, −10, −14

Q+
5 8, 43, 60, −16, −4, −4

Q+
6 16, 32, 47, −24, −4, −12

Q+
7 15, 16, 100, −12, −4, −12

Q−1 7, 11, 292, −8, −4, −6
Q−2 23, 28, 40, 20, 12, 20
Q−3 7, 39, 79, 30, 6, 2
Q−4 12, 23, 75, −10, −8, −4
Q−5 7, 20, 147, −8, −6, −4
Q−6 27, 28, 39, 4, 26, 24
Q−7 3, 23, 295, −22, −2, −2

Table 8.2: Coefficients of ternary quadratic forms, level 172.

is satisfied, where

kf17A
=

1

2
· 〈f17A, f17A〉
L(f17A, 1)

√
17

= 1.331879106385216159220474762.

8.2 f289A

We readily find the space M(Õ)f289A = ϕ
(
M(Õ)f17A

)
of dimension 1. Using

Table 8.1, we can check that

ΘO+

(
M(Õ)f289A

)
= ΘO−

(
M(Õ)f289A

)
= 0,

which is expected since L(f289A, 1) = 0.

9 Example: level 192

Let H = H(−1,−19), the quaternion algebra ramified precisely at ∞ and 19.
A maximal order, and representatives for its left ideals classes, are given by

O = a1 =

〈
1, i,

1 + j

2
,
i+ k

2

〉
,

a2 =

〈
2, 2i,

3 + 2i+ j

2
,
2 + 3i+ k

2

〉
.

Its index p suborder is given by Õ =

〈
1, 19i,

1 + j

2
,
19i+ k

2

〉
; inequivalent Õ-

subideals for each O-ideal are show in Table 9.1.



308 A. Pacetti and G. Tornaŕıa

−d cf289A
(d) L(f289A,−d, 1) −d cf289A

(d) L(f289A,−d, 1)

-4 2 2.663758 -104 4 2.089624
-8 -2 1.883561 -111 -2 0.505665

-15 2 1.375559 -115 2 0.496793
-19 -2 1.222216 -120 0 0.000000
-35 -2 0.900515 -123 -6 4.323294
-43 2 0.812439 -127 2 0.472741
-47 0 0.000000 -132 0 0.000000
-52 0 0.000000 -151 2 0.433547
-55 2 0.718362 -152 0 0.000000
-59 -2 0.693584 -155 2 0.427916
-67 0 0.000000 -168 -4 1.644107
-83 -2 0.584771 -179 2 0.398197
-84 4 2.325119 -183 -2 0.393821
-87 2 0.571170 -191 0 0.000000

-103 0 0.000000 -195 4 1.526046

−d cf289A
(d) L(f289A,−d, 1) −d cf289A

(d) L(f289A,−d, 1)

-3 -1 0.768961 -95 -4 2.186367
-7 -1 0.503403 -107 3 1.158819

-11 3 3.614190 -116 2 0.494647
-20 -2 1.191269 -131 -3 1.047301
-23 1 0.277716 -139 -1 0.112969
-24 2 1.087475 -143 -2 0.445509
-31 -1 0.239213 -148 -2 0.437919
-39 -4 3.412341 -159 2 0.422500
-40 2 0.842354 -163 7 5.111720
-56 0 0.000000 -164 -4 1.664037
-71 3 1.422585 -167 -1 0.103064
-79 -1 0.149848 -184 -8 6.283996
-88 -2 0.567915 -199 1 0.094414
-91 -2 0.558475

Table 8.3: Coefficients of Θ+
f17A

(top), Θ−f17A
(bottom), and central values for

f289A
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We fix two index p suborders of Õ

O+ =

〈
1, 19i,

1 + j

2
,
19i+ 19k

2

〉
,

O− =

〈
1, 19i,

1 + 19j

2
,
19i+ 18j + k

2

〉

in the + and − genus respectively. Table 9.1 shows the maps from Õ-ideals
to ternary quadratic forms of level 192 in the + genus and in the − genus,
computed via O+- and O−-subideals respectively. The actual coefficients of the
ternary quadratic forms are given in Table 9.2, with the notation as in (2.1).

9.1 f19A

By computing the Brandt matrices for O, we find the space M(Õ)f19A =
ψÕ

(
M(O)f19A

)
of dimension 1, spanned by

e+
f19A

= e−f19A
= ψÕ

(
[a1]− [a2]

2

)
,

with heights
〈
e+
f19A

, e+
f19A

〉
=
〈
e−f19A

, e−f19A

〉
= 15. Using Table 9.1, we see that

Θ+
f19A

= Q+
1 + 2Q+

2 + 2Q+
3 + 2Q+

4 + 2Q+
5 +Q+

6

−Q+
7 − 2Q+

8 − 2Q+
9 − 2Q+

10 − 2Q+
11 −Q+

12,

and

Θ−f19A
= 2Q−1 + 2Q−2 + 2Q−3 + 2Q−4 + 2Q−5

− 2Q−6 − 2Q−7 − 2Q−8 − 2Q−9 − 2Q−10.

Table 9.3 shows the values of cf19A
(d) and L(f19A,−19d, 1) = L(f361B, d, 1),

where 0 < d < 200 is a fundamental discriminant such that 19 - d. The
formula

L(f19A,−19d, 1) = L(f361B, d, 1) = kf19A

cf19A
(d)2

√
d

is satisfied, where

kf19A
=

2

3
· 〈f19A, f19A〉
L(f19A, 1)

√
19

= 1.893639859594845381072872862 = L(f361B, 1).

9.2 f361A

By computing the Brandt matrices for Õ, we find the space M(Õ)f361A of di-
mension 2. Using Table 9.1, we can check that

ΘO+

(
M(Õ)f361A

)
= ΘO−

(
M(Õ)f361A

)
= 0,

which is expected since L(f361A, 1) = 0.
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O-ideals Õ-subideals χ + genus − genus

a1 b1,1 =
〈
1, 19i, 1+j

2
, 19i+k

2

〉
+ Q+

1 Q−1
b1,2 =

〈
19, 14 + i, 19+j

2
, 14+i+k

2

〉
+ Q+

2 Q−2
b1,3 =

〈
19, 9 + i, 19+j

2
, 28+i+k

2

〉
+ Q+

3 Q−3
b1,4 =

〈
19, 17 + i, 19+j

2
, 36+i+k

2

〉
+ Q+

3 Q−4
b1,5 =

〈
19, 15 + i, 19+j

2
, 34+i+k

2

〉
+ Q+

2 Q−5
b1,6 =

〈
19, 16 + i, 19+j

2
, 16+i+k

2

〉
− Q+

4 Q−4
b1,7 =

〈
19, 11 + i, 19+j

2
, 30+i+k

2

〉
− Q+

5 Q−5
b1,8 =

〈
19, 1 + i, 19+j

2
, 20+i+k

2

〉
− Q+

6 Q−1
b1,9 =

〈
19, 7 + i, 19+j

2
, 26+i+k

2

〉
− Q+

5 Q−2
b1,10 =

〈
19, 6 + i, 19+j

2
, 6+i+k

2

〉
− Q+

4 Q−3
a2 b2,1 =

〈
38, 2 + 2i, 59+2i+j

2
, 22+3i+k

2

〉
+ Q+

7 Q−6
b2,2 =

〈
38, 14 + 2i, 71+2i+j

2
, 2+3i+k

2

〉
+ Q+

8 Q−7
b2,3 =

〈
38, 12 + 2i, 31+2i+j

2
, 18+3i+k

2

〉
+ Q+

9 Q−8
b2,4 =

〈
38, 26 + 2i, 7+2i+j

2
, 58+3i+k

2

〉
+ Q+

9 Q−9
b2,5 =

〈
38, 24 + 2i, 43+2i+j

2
, 74+3i+k

2

〉
+ Q+

8 Q−10

b2,6 =
〈
38, 36 + 2i, 55+2i+j

2
, 54+3i+k

2

〉
+ Q+

7 Q−6
b2,7 =

〈
38, 16 + 2i, 35+2i+j

2
, 62+3i+k

2

〉
+ Q+

8 Q−7
b2,8 =

〈
38, 6 + 2i, 63+2i+j

2
, 66+3i+k

2

〉
+ Q+

9 Q−8
b2,9 =

〈
38, 32 + 2i, 51+2i+j

2
, 10+3i+k

2

〉
+ Q+

9 Q−9
b2,10 =

〈
38, 22 + 2i, 3+2i+j

2
, 14+3i+k

2

〉
+ Q+

8 Q−10

b2,11 =
〈
38, 18 + 2i, 75+2i+j

2
, 46+3i+k

2

〉
− Q+

10 Q−8
b2,12 =

〈
38, 34 + 2i, 15+2i+j

2
, 70+3i+k

2

〉
− Q+

10 Q−9
b2,13 =

〈
38, 30 + 2i, 11+2i+j

2
, 26+3i+k

2

〉
− Q+

11 Q−10

b2,14 =
〈
38, 2i, 19+2i+j

2
, 38+3i+k

2

〉
− Q+

12 Q−6
b2,15 =

〈
38, 8 + 2i, 27+2i+j

2
, 50+3i+k

2

〉
− Q+

11 Q−7
b2,16 =

〈
38, 4 + 2i, 23+2i+j

2
, 6+3i+k

2

〉
− Q+

10 Q−8
b2,17 =

〈
38, 20 + 2i, 39+2i+j

2
, 30+3i+k

2

〉
− Q+

10 Q−9
b2,18 =

〈
38, 10 + 2i, 67+2i+j

2
, 34+3i+k

2

〉
− Q+

11 Q−10

b2,19 =
〈
2, 38i, 3+38i+j

2
, 2+19i+k

2

〉
− Q+

12 Q−6
b2,20 =

〈
38, 28 + 2i, 47+2i+j

2
, 42+3i+k

2

〉
− Q+

11 Q−7

Table 9.1: Maps ΘO+ and ΘO− from the Õ-Ideals to ternary quadratic forms
in the + and − genus respectively, level 192.
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a1 a2 a3 a23 a13 a12

Q+
1 1, 76, 380, −76, 0, 0

Q+
2 5, 76, 92, −76, −4, 0

Q+
3 25, 36, 36, −4, −16, −16

Q+
4 17, 44, 44, 12, 16, 16

Q+
5 20, 24, 73, 4, 8, 20

Q+
6 4, 20, 361, 0, 0, −4

Q+
7 5, 16, 365, 16, 2, 4

Q+
8 16, 24, 77, 20, 8, 4

Q+
9 20, 36, 45, 20, 16, 12

Q+
10 9, 44, 77, 28, 6, 8

Q+
11 5, 61, 92, 16, 4, 2

Q+
12 4, 77, 96, 40, 4, 4

Q−1 8, 21, 181, 2, 4, 8
Q−2 29, 29, 37, −6, −6, −18
Q−3 13, 48, 48, 20, 8, 8
Q−4 29, 32, 32, −12, −8, −8
Q−5 29, 29, 41, −14, −14, −18
Q−6 21, 32, 53, −20, −14, −16
Q−7 29, 32, 37, −28, −6, −8
Q−8 12, 13, 184, −12, −4, −4
Q−9 8, 29, 124, 20, 4, 4
Q−10 21, 29, 53, 26, 14, 2

Table 9.2: Coefficients of ternary quadratic forms, level 192.



312 A. Pacetti and G. Tornaŕıa

d cf361B
(d) L(f361B, d, 1) d cf361B

(d) L(f361B, d, 1)

1 1 1.893640 104 4 2.970987
5 -1 0.846861 120 -2 0.691460

17 1 0.459275 137 -1 0.161785
24 2 1.546150 140 -3 1.440376
28 1 0.357864 149 -1 0.155133
44 -1 0.285477 156 6 5.458051
61 -5 6.061393 157 -4 2.418063
73 1 0.221634 161 0 0.000000
77 -1 0.215800 168 -2 0.584390
85 -3 1.848547 172 3 1.299498
92 2 0.789702 177 -2 0.569339
93 2 0.785445 188 1 0.138108

101 2 0.753697 197 2 0.539665

d cf361B
(d) L(f361B, d, 1) d cf361B

(d) L(f361B, d, 1)

8 0 0.000000 97 0 0.000000
12 -2 2.186587 105 2 0.739201
13 0 0.000000 109 0 0.000000
21 -2 1.652904 113 2 0.712555
29 2 1.406560 124 -8 10.883448
33 -2 1.318562 129 2 0.666903
37 2 1.245250 136 4 2.598052
40 4 4.790572 141 -2 0.637893
41 -2 1.182947 145 2 0.629033
53 0 0.000000 165 -2 0.589679
56 -4 4.048772 173 -2 0.575883
60 -2 0.977871 181 6 5.067113
65 0 0.000000 184 -4 2.233616
69 4 3.647479 185 2 0.556893
88 -4 3.229803 193 4 2.180915
89 0 0.000000

Table 9.3: Coefficients of Θ+
f19A

(top), Θ−f19A
(bottom), and central values for

f361B
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d cf19A
(d) L(f19A, d, 1) d cf19A

(d) L(f19A, d, 1)

1 1 0.453253 104 12 6.400100
5 3 1.824309 120 6 1.489542

17 -3 0.989371 137 3 0.348516
24 -6 3.330718 140 -3 0.344762
28 -3 0.770911 149 -9 3.007688
44 -9 5.534770 156 6 1.306415
61 3 0.522298 157 0 0.000000
73 -3 0.477444 161 -12 5.143876
77 3 0.464877 168 6 1.258893
85 -3 0.442460 172 3 0.311042
92 6 1.701177 177 -6 1.226470
93 -6 1.692006 188 9 2.677608

101 6 1.623614 197 6 1.162546

Table 9.4: Coefficients of Θ+
f361B

and central values for f19A

9.3 f361B

We readily find the space M(Õ)f361B = ϕ
(
M(Õ)f19A

)
of dimension 1, spanned

by

e+
f361B

= ϕ ◦ ψÕ

(
[a1]− [a2]

2

)
,

with height
〈
e+
f361B

, e+
f361B

〉
= 15. Using Table 9.1, we see that

Θ+
f361B

= Q+
1 + 2Q+

2 + 2Q+
3 − 2Q+

4 − 2Q+
5 −Q+

6

−Q+
7 − 2Q+

8 − 2Q+
9 + 2Q+

10 + 2Q+
11 +Q+

12;

on the other hand ΘO−

(
M(Õ)f361B

)
= 0, which is expected since ε(f19A) = +1.

Table 9.4 shows the values of cf361B
(d) and L(f361B,−19d, 1) = L(f19A, d, 1),

where 0 < d < 200 is a fundamental discriminant such that
(
d
19

)
= +1. The

formula

L(f361B,−19d, 1) = L(f19A, d, 1) = kf361B

cf361B
(d)2

√
d

is satisfied, where

kf361B
=

19

540
· 〈f361B, f361B〉
L(f361B, 1)

√
19

= 0.4532532444961036035788391869 = L(f19A, 1).
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Central values of quadratic twists for a
modular form of weight 4

Holly Rosson and Gonzalo Tornaŕıa

1 Introduction

Let f be the unique cuspidal modular form of weight 4 and level 7, whose
q-expansion begins f = q− q2−2q3−7q4 +16q5 +2q6−7q7 + . . . . We consider
here the problem of computing the central values for the family of twisted
L-functions

L(f,D, s) =
∞∑

m=1

a(m)

ms

(
D

m

)
,

where D is a fundamental discriminant and a(m) is the m-th Fourier coefficient
of f .

By Waldspurger’s formula [W], these central values L(f,D, 2) are related
to the |D|-th Fourier coefficient of weight 5/2 modular forms in Shimura corre-
spondence with f . The question is, then, how to find the said modular forms,
and specifically how to compute their Fourier coefficients.

A constructive version of Waldspurger’s formula was proved by Gross in [G]
for the case of weight 2 and prime level. This has been generalized in several
ways (cf. [BSP1], [BSP2], [MRVT], [PT]). In all these constructions, the
modular forms of half integral weight are obtained as linear combinations of
(generalized) ternary theta series coming from the arithmetic of quaternion
algebras.

For the case of higher weight as done in [BSP2] these theta series involve
spherical polynomials of even degree, and thus apply only to the construction of
modular forms of weight ≡ 3/2 (mod 2) in correspondence with even weights
≡ 2 (mod 4).

Indeed, to obtain modular forms of weight 5/2 from ternary quadratic forms
it is necessary to utilize spherical polynomials of degree 1. However, such a
theta series vanishes trivially, since such polynomials are odd functions. We
will show how to solve this problem by employing the weight functions defined
in [MRVT]. Although we only show here the simplest example, it is clear that
a combination of the techniques of [BSP2] with those of [MRVT] should be
enough to completely solve the problem in question for any modular form of
even weight and prime level.

Much of our work was done at the Isaac Newton Institute during the Special
Week on Ranks of Elliptic Curves and Random Matrix Theory. We thank the
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institute and the organizers of this program for their support and hospitality,
as well as Zhengyu Mao and Fernando Rodriguez-Villegas for many helpful
conversations.

2 Spherical polynomials and f

Let B = B(−1,−7) be the quaternion algebra ramified at 7 and∞. A maximal
order, with class number 1, is given by

R =

〈
1, i,

1 + j

2
,
i+ k

2

〉
.

The norm in the given basis is the quaternary quadratic form

N
(
a, b, c, d) = a2 + b2 + 2c2 + 2d2 + ac+ bd,

of level 7. It follows from results of Eichler on the Basis Problem [E] that
f can be obtained as a (generalized) theta series for N with some spherical
polynomial of degree 2.

The group of automorphisms of N has order 32, and is generated by the
involutions

N(a, b, c, d) = N(a,−b, c,−d) = N(b, a, d, c) = N(a+ c, b,−c, d).

Let P (a, b, c, d) be a spherical polynomial of degree 2. We can assume without
loss of generality that P is even (i.e. invariant) with respect to these involu-
tions: if P were odd with respect to any of the above involutions the theta
series weighted by P would be zero.

We claim that such P is unique up to a constant. Indeed, P is a quadratic
form in 4 variables. Since P (a, b, c, d) = P (a,−b, c,−d), it follows that
P (a, b, c, d) = P1(a, c) + P2(b, d) for some quadratic forms P1 and P2 in 2
variables. From P (a, b, c, d) = P (b, a, d, c) we conclude that P1 = P2. The last
involution implies that P1(a, c) = P1(a + c,−c), and it follows that P1 is a
linear combination of the polynomials a2 + ac and c2. The last condition on
P1 comes from the fact that P satisfies the Laplace differential equation

∆N(P ) = 0,

where ∆N is the Laplacian operator with respect to the quadratic form N. Note
that ∆N(P ) = 2∆N(P1), and since P1 is a quadratic form we can compute

∆N(P1) = Tr(M(P1) ·M(N)−1).

Here M(P1) and M(N) are the matrices of P1 and N respectively. Hence

∆N

[
α(a2 + ac) + β(c2)

]
=

6α + 4β

7
= 0,
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and it follows that, up to a constant, P1(a, c) = 2a2 + 2ac− 3c2.

Therefore we can compute the Fourier expansion of f by

f :=
1

4

∑

(a,b,c,d)∈Z4

(2a2 + 2ac− 3c2) qN(a,b,c,d)

=
∞∑

m=1

a(m) qm

= q − q2 − 2q3 − 7q4 + 16q5 + 2q6 − 7q7 +O(q8).

Note that we used P1(a, c) as the spherical polynomial instead of P (a, b, c, d)
to simplify the computations, but as explained above the resulting theta series
is the same up to a constant.

Finally, the standard method to compute the central values uses the quickly
convergent series

L(f,D, 2) = (1 + εD)
∞∑

m=1

(
1 +

2πm√
ND

)
exp

(
− 2πm√

ND

)(
D

m

)
a(m)

m2
, (2.1)

where εD and ND are the sign and the level of the functional equation for
L(f,D, s) and are easily seen to be

εD = sign(D) ·
{(

D
7

)
if 7 - D,

1 if 7 | D;
ND = D2 ·

{
7 if 7 - D,

1 if 7 | D.

Although the convergence of this series is exponential, the number of terms
that is required to achieve a given precision is O(

√
ND) = O(|D|). Therefore,

computing L(f,D, 2) for |D| 6 x will take time roughly proportional to x2,
with a big constant. In the next section we will show how to compute the
exact value for the ratios

L(f,D, 2)

L(f, 1, 2)
D > 0,

L(f,D, 2)

L(f,−4, 2)
D < 0,

in time proportional to x
3/2 , with a much smaller constant. Of course, the

special values L(f, 1, 2) and L(f,−4, 2) can be computed very quickly by the
series (2.1), since the respective levels 7 and 7 · 16 are very small.

For instance, using the first 1000 Fourier coefficients, the series (2.1) gives
about 1000 decimal places for L(f, 1, 2), and about 250 decimal places for
L(f,−4, 2). However, the same 1000 Fourier coefficients will only give about
4 decimal places for L(f,−191, 2) or L(f, 197, 2). Note that all the central
values that appear in Tables 3.1 and 3.2 were computed using the first 1000
Fourier coefficients of f , and thus their accuracy is actually less than what is
displayed for the last few entries.
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3 Two modular forms of weight 5/2

Consider the ternary lattice corresponding to R, namely

S0 := {b ∈ Z+ 2R : Tr b = 0} =

〈
2i, j, i+ k

〉
.

In this section we only deal with quaternions in S0, which we will write in that
basis as triples of integers, so that (x, y, z) is the quaternion x(2i) + y(j) +
z(i+ k), and S0 corresponds to Z3. With this convention, the norm restricted
to S0 is the ternary quadratic form

Q(x, y, z) := 4x2 + 7y2 + 8z2 + 4xz,

whose corresponding bilinear form is

〈(x, y, z), (x′, y′, z′)〉 := 8xx′ + 14yy′ + 16zz′ + 4xz′ + 4zx′.

As explained in the introduction, in order to obtain modular forms of weight
5/2 we need to compute a theta series of Q with spherical polynomials of
degree 1. Since such polynomials are odd, we need to combine them with odd
weight functions as defined in [MRVT].

3.1 Imaginary twists

Let ψ be the quadratic character of conductor 7. This is an odd character,
and thus the weight function ω7 associated to ψ is odd. To compute ω7, we
can use b0 = (1, 0, 2), of norm 44 6≡ 0 (mod 7). By computing 〈(x, y, z), b0〉 =
16x+ 36z ≡ 2x+ z (mod 7), we find that

ω7(x, y, z) :=

(
2x+ z

7

)
.

We must now find a suitable spherical polynomial of degree 1; any homoge-
neous polynomial of degree 1 is indeed a spherical polynomial. Note that

Q(x+ z,−y,−z) = Q(x, y, z),

so that (x+ z,−y,−z) is an automorphism of Q, and also

ω7(x+ z,−y,−z) = ω7(x, y, z).

Thus, polynomials which are odd with respect to this involution, like y and
z, will lead to null theta series; any other polynomial will give the same theta
series as the unique even (i.e. invariant) polynomial x+z/2 (up to a constant).
This is the natural candidate, although for the sake of simplicity we will use
x instead.
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−d c−(d) L(f,−d, 2) −d c−(d) L(f,−d, 2) −d c−(d) L(f,−d, 2)

-4 1 2.238791 -71 0 0.000000 -148 -12 1.432431
-8 1 0.791532 -79 -8 1.632461 -151 14 1.891883

-11 2 1.963697 -88 4 0.347136 -155 4 0.148499
-15 2 1.233180 -95 2 0.077371 -163 -10 0.860640
-23 -2 0.649489 -107 -2 0.064727 -179 -18 2.423088
-39 -6 2.647336 -116 12 2.064329 -183 -6 0.260453
-43 -6 2.286669 -120 18 4.414450 -184 2 0.028694
-51 8 3.147228 -123 4 0.210071 -191 24 3.908201
-67 2 0.130632 -127 -2 0.050056

Table 3.1: Coefficients of g− and central values for the imaginary twists of f .

We are now ready to compute

g− :=
1

2

∑

(x,y,z)∈Z3

xω7(x, y, z) qQ(x,y,z)

=
∞∑

n=1

c−(n) qn

= q4 + q8 + 2q11 + 2q15 − q16 − 2q23 +O(q32),

a weight 5/2 modular form of level 4 · 72 and character ψ1, in Shimura corre-
spondence with f ⊗ ψ. Here ψ1(n) :=

(−1
n

)
ψ(n).

Table 3.1 shows the values of c−(d) and L(f,−d, 2), where −200 < −d < 0
is a fundamental discriminant such that

(−d
7

)
= −1. The formula

L(f,−d, 2) = k−
c−(d)2

d3/2

is satisfied, where

k− := 8L(f,−4, 2) = 17.9103241434888576215636539802490506139323...

Note that if
(−d

7

)
6= −1, i.e.

(
d
7

)
6= 1, it is trivial that c−(d) = 0, because the

genus of Q only represents squares modulo 7 and ω7 = 0 for zeros modulo 7 of
Q, and also that L(f,−d, 2) = 0, since the sign of the functional equation for
L(f,−d, s) is negative for such d.

3.2 Real twists

For this we need to use an odd weight function ωl, for a suitably chosen prime
l. First of all we need l ≡ 3 (mod 4) so that ωl is odd, but we should also
require that L(f,−l, 2) 6= 0. From Table 3.1, the smallest such l is 11, for
which L(f,−11, 2) ≈ 2.238791. In order to compute ω11, we will use again
b0 = (1, 0, 2), of norm 44 ≡ 0 (mod 11). Now, 〈(x, y, z), b0〉 ≡ 5x + 3z ≡
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d c+(d) L(f, d, 2) d c+(d) L(f, d, 2) d c+(d) L(f, d, 2)
1 1 0.599566 77 14 0.347846 141 84 2.526777
8 7 1.298369 85 -28 0.599825 149 0 0.000000

21 14 2.442273 88 42 1.281185 156 98 2.955305
28 -7 0.396576 92 0 0.000000 161 -42 1.035445
29 -28 3.009928 93 -28 0.524118 165 -84 1.996041
37 0 0.000000 105 42 1.965992 168 -42 0.971408
44 28 1.610550 109 28 0.413060 172 -28 0.208381
53 28 1.218258 113 14 0.097831 177 42 0.449134
56 -35 3.505267 120 -14 0.089397 184 -84 1.695001
57 -14 0.273074 133 -42 1.379076 193 42 0.394424
60 -42 2.275668 137 -28 0.293138 197 56 0.679989
65 14 0.224245 140 56 2.270132

Table 3.2: Coefficients of g+ and central values for the real twists of f .

3(−2x+ z) (mod 11), with
(

3
11

)
= +1, so that

ω11(x, y, z) :=





0 if 11 - Q(x, y, z),(−2x+z
11

)
if 2x 6≡ z (mod 11),(

x
11

)
otherwise.

We claim that
ω11(x+ z,−y,−z) = ω11(x, y, z).

Indeed, by the uniqueness of weight functions, the above equation is true up to
a constant. It is thus enough to check the equality for a single nonzero value,
such as ω11(1 + 2, 0,−2) = ω11(1, 0, 2) = +1. Therefore, the same considera-
tions as above apply, and lead us to choose x as the spherical polynomial.

We can then define and compute

g+ :=
1

4

∑

(x,y,z)∈Z3

xω11(x, y, z) qQ(x,y,z)/11

=
∞∑

n=1

c+(n) qn

= q − 3q4 + 7q8 − 5q9 − 5q16 + 14q21 +O(q25),

a weight 5/2 modular form of level 4 · 7 and trivial character, in Shimura
correspondence with f .

Table 3.2 shows the values of c+(d) and L(f, d, 2), where 0 < d < 200 is a
fundamental discriminant such that

(
d
7

)
6= −1. The formula

L(f, d, 2) = k+
c+(d)2

d3/2
·





1 if
(
d
7

)
= 1,

2 if
(
d
7

)
= 0,

0 if
(
d
7

)
= −1.
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is satisfied, where

k+ := L(f, 1, 2) = 0.599566157968617566581061167075228207656156...

Note that if
(
d
7

)
= −1, it is trivial that c+(d) = 0, because the genus of Q only

represents squares modulo 7, and also that L(f, d, 2) = 0, since the sign of the
functional equation for L(f, d, s) is negative for such d.
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Heuristics on class groups and on
Tate-Shafarevich groups: The magic of

the Cohen-Lenstra heuristics

Christophe Delaunay

When we have to study a number field or an elliptic curve defined over Q,
some groups may appear which make the explicit computations more compli-
cated and which are, in a way, not very “welcome”. These groups are the class
groups of number fields and the Tate-Shafarevich groups of elliptic curves.
A direct study of their general behavior is a very difficult problem. In [3],
Cohen and Lenstra explained how to obtain precise conjectures for this pur-
pose using a general fundamental heuristic principle. In [6], it is shown how
to adapt the Cohen-Lenstra idea to Tate-Shafarevich groups using the anal-
ogy between number fields and elliptic curves. Understanding the behavior of
Tate-Shafarevich groups is important in itself first but it may also be useful
for studying the distribution of the special values of the L-functions L(E, s)
attached to elliptic curves. Indeed, the Birch and Swinnerton-Dyer conjecture
relates the value L(E, 1) to natural invariants of E including the order of the
Tate-Shafarevich group. This paper sketches the Cohen-Lenstra philosophy in
both cases of class groups and of Tate-Shafarevich groups. It is organized as
follows:

In the first section, we describe the analogy between number fields and ellip-
tic curves defined over Q. In the second section, we recall the Cohen-Lenstra
heuristic for class groups. Using the analogy of the first section, we adapt,
in the third section, the heuristic for Tate-Shafarevich groups. Finally, we re-
strict the heuristic to the case of families of quadratic twists of an elliptic curve.

Acknowledgements. I am very pleased to be able to thank here the or-
ganizers of the Clay Mathematics Institute Special Week on Ranks of Elliptic
Curves and Random Matrix Theory, held at the Isaac Newton Institute for
Mathematical Sciences, for the invitation to participate and to give a lecture
on the heuristics. I could benefit from many interesting discussions with par-
ticipants whom I want to thank. I am very happy to thank H. Cohen very
much for his availability and his many suggestions. I am also grateful to
C. Liebendörfer for her remarks and advice she kindly gave me.

This text was prepared during a post-doctoral position at the École Polytech-
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1 Analogy between number fields and elliptic

curves defined over Q
In [6], we made a study of Tate-Shafarevich groups of elliptic curves defined
over Q similar to the one made in [3] about class groups of number fields. To
do this, we used the deep analogy between number fields and elliptic curves
defined over Q on the one hand and class groups and Tate-Shafarevich groups
on the other hand. This analogy is summarized in this section. First, we give
the following table which states the correspondences between the main invari-
ants of number fields and of elliptic curves defined over Q:

Elliptic curve E/Q Number field K
E(Q)tors rational torsion points � U(K)tors roots of unity
E(Q) Mordell-Weil group of E � U(K) unit group of K
N(E) conductor of E � |DK | absolute value of

the discriminant of K
X(E) Tate-Shafarevich group of E � Cl(K) class group of K
R(E) regulator of E � R(K) regulator of K
E(Z) integer points on E � exceptional units of K

The torsion parts of the groups E(Q) and U(K) are both finite and easy to
determine; furthermore they play the same role. For a number field K, the
unit group U(K) is a finitely generated abelian group and it is not difficult to
compute its rank r since we have r = r1 + r2 − 1 where r1 (resp. r2) is the
number of real (resp. complex) places of K. However, it may be difficult to
find the units of K. The Mordell-Weil group of an elliptic curve E(Q) is a
finitely generated abelian group, its rank can be predicted by the Birch and
Swinnerton-Dyer conjecture and it may also be difficult to compute rational
points on E(Q) if they have large denominators. The primes dividing the
absolute value of the discriminant or the conductor are rather special in both
cases. Another property is that there are only finitely many number fields
(resp. elliptic curves/Q) up to isomorphism with a bounded absolute value
of the discriminant (resp. conductor). The class group of a number field is
a finite abelian group and measures in a way the obstruction of the ideals to
be principal. Whenever this group is non-trivial, the arithmetic in K is more
complicated. Similarly, the Tate-Shafarevich group X of an elliptic curve is a
finite abelian group (here the finite part is only conjectural but we assume this
conjecture to be true) and it measures the obstruction of the “local-global”
principle. When X is non-trivial, it can be more difficult to study the elliptic
curve. The regulator of a number field (resp. an elliptic curve) is the absolute
value of the determinant of a certain matrix which is defined with the help of
a basis of the unit group (resp. a basis of the Mordell-Weil group). In the
case of a real quadratic field (the rank of the unit group of such a field is 1),
as well as in the case of a rank 1 elliptic curve, there exist analytic processes
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to find a unit of the number field and a non-torsion point of the elliptic curve
(the processes are the Gauss construction for number fields and the Heegner
point construction for elliptic curves). The integer points on an elliptic curve
form a finite subset of the Mordell-Weil group and are exact analogues of the
exceptional units of a number field; exceptional units are units u such that 1−u
is also a unit and they form a finite subset of the unit group (this analogy was
pointed out by H. Cohen). Finally, for a number field, we have the following
exact sequence:

1→ U(K)/U(K)p → Sp(K)→ Cl(K)[p]→ 1

where Sp(K) = Vp(K)/K∗p with Vp(K) = {γ ∈ K∗|γZK = Ip for some ideal
I ⊂ K} and where ZK is the ring of integers of K. The set Vp(K) is indeed
a subgroup of the multiplicative group K∗: it is called the group of p-virtual
units. The group Sp(K) is called the p-Selmer group of the number field K
(we refer to [2] for all this terminology and for some more information about
those groups).
If L(K, s) is the L-function associated to K (i.e. the Dedekind zeta function),
we have:

L(K, s) ∼s=0 −sr
R(K)|Cl(K)|
|U(K)tors|

where r = r1 + r2 − 1 is the the rank of U(K).
For an elliptic curve E:

1→ E(Q)/pE(Q)→ Sp(E)→X(E)[p]→ 1

where Sp(E) is the p-Selmer group of E (cf. [11]), and if L(E, s) is the L-
function attached to E, then the Birch and Swinnerton-Dyer conjecture pre-
dicts that:

L(E, s) ∼s=1 (s− 1)r
R(E)|X(E)|
(|E(Q)tors|)2

cΩ (1.1)

where r is the rank of the Mordell-Weil group, c is the product of the Tamagawa
numbers (it is a small integer) and Ω is the real period of E.
The exact sequences and the estimates of the L-functions are exact analogues.
However, we should note that the main terms in the right-hand side of (1.1)
are perfect squares:

• R(E) is the determinant of a Gram matrix and so is naturally the square
of a determinant.

• The order of the group X(E) is a square (we assume it is finite).

• In the denominator, there is the square of the order of E(Q)tors.

Cassels proved that there exists a bilinear alternating pairing:

β : X×X −→ Q/Z
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which is non-degenerate if the Tate-Shafarevich group is finite; we assume X
to be a finite group. Then we will say that a couple (G, β) is a group of type
S, if G is a finite abelian group and:

β : G×G −→ Q/Z

is a non-degenerate alternating bilinear pairing.
Two groups (G1, β1) and (G2, β2) of type S are said to be isomorphic if there
exists an isomorphism σ : G1 → G2 such that:

β2(σ(x), σ(y)) = β1(x, y) for all x, y ∈ G1.

If (G, β) is a group of type S, then G ' H × H where H is a finite abelian
group; in particular, this explains why the order of a Tate-Shafarevich group
is a perfect square. Conversely, every group G ' H ×H, where H is a finite
abelian group, can be endowed with a unique (up to isomorphism) structure
of group of type S.

In the sequel, the letter p will always denote a prime number. For G a finite
abelian group, we denote by Gp the p-part of G: that is Gp is the subgroup of
G consisting of elements of order a power of p. Note that every finite abelian
group can be written as the direct sum of its p-group. The subgroup Gp is thus
a p-group (i.e. |Gp| = pn for some n ∈ N) and then can be uniquely written
as:

Gp ' Z/pa1Z× Z/pa2Z · · · × Z/parZ
for some (unique) positive integers a1 6 a2 6 . . . 6 ar ∈ N. The number
r is called the p-rank of G. It is denoted by rp(G) and is also equal to the
dimension over Z/pZ of the Z/pZ-vector space G/pG.

The symbol
∑

G(n) (resp.
∑

GS(n)) means that the sum is over all isomorphism

classes of finite abelian groups (resp. groups of type S) of order n. Note that∑
GS(n) ≡ 0 if n is not a perfect square. Finally, Aut(G) denotes the group

of automorphisms of G and AutS(G) the group of automorphisms of (G, β)
which preserve the pairing β.

2 Heuristics on class groups of quadratic num-

ber fields

The class group measures in a way how difficult it is to perform the explicit
computations related to some underlying arithmetical problem. Then, we
would like to understand how it behaves in general; are we lucky if, for exam-
ple, the p-part of the class group of some number field is trivial or are they
often trivial? In fact, for those questions, we have to restrict our study to
natural families of number fields whose unit groups have the same rank. Un-
fortunately, and even for such natural families, a direct study of this problem
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is completely out of reach nowadays. In [3], however, Cohen and Lenstra pro-
posed a wonderful heuristic principle that allows to give conjectural answers
to many questions related to the general behavior of class groups in a natural
family. We now sketch their philosophy in the first case, that is, in the case of
class groups attached to quadratic imaginary number fields.

2.1 Imaginary quadratic number fields

Imaginary quadratic number fields have the form K = Q(
√
DK) where DK < 0

is a fundamental discriminant. The unit group is a finite group (its rank is 0)
and the discriminant of K is DK .

For our purpose, we let F be a C-valued function defined on isomorphism
classes of finite abelian groups (because class groups are finite abelian groups).

Examples. We will look at the following ones:

Fp-triv(G) =

{
1 if Gp ' {0}
0 else

Fcyclic(G) =

{
1 if G is cyclic
0 else

Fp−rank(G) = prp(G)

Then we consider the following limit:

MCl,0(F ) = lim
X→∞




∑

|DK |6X
F (Cl(K))

∑

|DK |6X
1


 (2.1)

where the sums are over all quadratic imaginary number fields K whose ab-
solute value of the discriminant is bounded by X. Note that there are only
finitely many such number fields, so that the term in the brackets of (2.1) is
meaningful.
We have two problems: does the limit exist? If yes, what is its value? One
moment’s thought tells us that, in fact, this is exactly what we want to answer.
For example, if we consider the function F = Fp-triv, then if the limit in (2.1)
exists for F , this limit is precisely the frequency of class groups with trivial
p-parts. But, as we mentioned above we cannot study this limit directly. The
fundamental idea of Cohen and Lenstra is to say that class groups behave as
random finite abelian groups G except that they have to be weighted by:

1

|Aut(G)| (2.2)

More precisely, we consider the following average:
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Definition 1. Let F be as above. The 0-average of F over finite abelian groups
is defined by:

MG,0(F ) = lim
X→∞




∑

n6X

∑

G(n)

F (G)

|Aut(G)|
∑

n6X

∑

G(n)

1

|Aut(G)|



.

If F is the characteristic function of a property P , we will speak of 0-
probability instead of 0-average.

From the theory of genera, the 2-part of the class group Cl(K) behaves in
a very special way and so we have to exclude it from our discussion and we
denote by:

Cl0(K) = {x ∈ Cl(K) such that x has odd order}

the odd part of Cl(K).
If F is a function as above, we define the function F ◦ odd to be the function:
F ◦ odd : G 7→ F (G0), where G0 denotes the odd part of G. We can now
formulate the Cohen-Lenstra heuristic:

Fundamental heuristic assumption for imaginary quadratic fields.
For all reasonable functions F , we have:

MCl,0(F ◦ odd) = MG,0(F ◦ odd)

The magic of the Cohen-Lenstra heuristic is that it works! Indeed, there are
strong evidences to believe in this assumption. Furthermore, the value of
MG,0(F ◦ odd) can be computed for many interesting functions and we can be
confident enough in the results it produces. In practice, in order to compute
MG,0(F ), we treat the numerator and the denominator of the definition of
MG,0(F ) separately. For this purpose we need the following Tauberian theo-
rem:

Theorem 2. Let (c(n))n>1 be a sequence of non-negative numbers and D(z) =∑
n c(n)/nz. If D(z) converges for <(z) > 0 and if there exists C ∈ C such

that D(z) − C/z can be analytically continued to an open subset containing
<(z) > 0, then, as X tends to infinity, we have:

∑

n6X
c(n) ∼ C log(x)

In view of the definition 1 we would like to apply this theorem with c(n) =∑
G(n) F (G)/|Aut(G)|, leading to:
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Definition 3. Let F be a function as above. We define the two following
Dirichlet series:

ζG(z) =
∑

n>1

1

nz

∑

G(n)

1

|Aut(G)|

ζG,F (z) =
∑

n>1

1

nz

∑

G(n)

F (G)

|Aut(G)|

Cohen and Lenstra proved (cf. [3]):

Theorem 4. We have:

ζG(z) =
∞∏

j=1

ζ(z + j)

where ζ is the Riemann zeta function.

From theorem 4 and theorem 2 we deduce a very good estimate for the
denominator of MG,0(F ):

Corollary 5. We have:

∑

n6X

∑

G(n)

1

|Aut(G)| ∼
∞∏

j=2

ζ(j) log(X).

For the numerator of MG,0(F ) we do the same; in general for reasonable
functions F , the Dirichlet series ζG,F satisfies the conditions of theorem 2, and
we can deduce that:

∑

n6X

∑

G(n)

F (G)

|Aut(G)| ∼ C log(X)

(for convenience C = 0 means that the left hand-side is O(1)). We then obtain:

MG,0(F ) =
C∏∞

j=2 ζ(j)

By the same method we can compute MG,0(F ◦ odd) and by the heuristic
assumption this is the average of F over class groups.

2.2 Real quadratic fields

This case is a little bit more subtle since the rank of the unit group is 1.
More generally, when the unit group is not a finite group, the Cohen-Lenstra
heuristic is more technical ([3], [4]). In our case, the philosophy is to say that
the odd part of a class group associated to a real quadratic field behaves as a
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random finite abelian group G of odd order divided by a random cyclic sub-
group (we still have the weight 1/|Aut(G)|). With this idea we can also define
a “1-average” over finite abelian group MG,1(F ) and the heuristic predicts that:

Fundamental heuristic assumption for real quadratic fields: For all
reasonable functions F we have:

MCl,1(F ◦ odd) = MG,1(F ◦ odd)

where MCl,1(F ) is defined as in (2.1) except that the sums are over real
quadratic number fields.

In fact, Cohen and Lenstra defined the u-average MG,u(F ) of F over finite
abelian groups for all u ∈ N. In general, the u-average can be computed by a
straightforward generalization of the method explained above ([3]):

Theorem 6. Let F be a function as above, u ∈ N and suppose that ζG,F
satisfies the conditions of theorem 2 then:

if u = 0 then MG,0(F ) = lim
z→0

ζG,F (z)

ζG(z)
,

if u > 0 then MG,u(F ) =
ζG,F (u)

ζG(u)
.

2.3 Examples

Let us consider the function F = Fp-triv, where p 6= 2; then F ◦ odd = F . The
function ζG,F is exactly the function ζG without its p-part. From theorem 4
we have:

ζG(z) =
∞∏

j=1

ζ(z + j)

=
∏

j

∏

q prime

(
1− 1

qz+j

)−1

=
∏

q prime

∏

j

(
1− 1

qz+j

)−1

.

So the term
∏

j

(
1− 1

pz+j

)−1

is exactly the p-Euler factor of ζG(z). Then we

deduce:

ζG,F (z) =
∏

q 6=p

∏

j

(
1− 1

qz+j

)−1

= ζG(z)
∏

j

(
1− 1

pz+j

)
.
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Finally, we obtain:

MG,0(F ) =
∞∏

j=1

(
1− 1

pj

)

MG,1(F ) =
∞∏

j=1

(
1− 1

pj+1

)
.

By the Cohen-Lenstra heuristic, we deduce the conjecture:

Conjecture 7. Let p 6= 2.
The probability that p divides the order of the class group of an imaginary
quadratic field is equal to:

1−
∞∏

j=1

(
1− 1

pj

)
=

1

p
+

1

p2
− 1

p5
· · ·

The probability that p divides the order of the class group of a real quadratic
field is equal to:

1−
∞∏

j=1

(
1− 1

pj+1

)
=

1

p2
+

1

p3
+

1

p4
· · ·

Let us consider some other examples that can be found in [3] (they are a
little more technical because they involve the p-rank of finite abelian groups).
- The u-average of the function F = Fcyclic ◦ odd is equal to:

MG,u(F ) =

∏
j>u+2(1− 1/2j)

1 + 1/2u+1

∏

p

(
1− 1/p+ 1/pu+2

1− 1/p

)∏

j>2

1

ζ(u+ j)

In particular, MG,0(F ) ≈ 0.98.
- The u-average of the function F (G) = prp(G) is 1+1/pu (note that F ◦odd = F
if p 6= 2). In particular, if p = 3, the 0-average of F is equal to 2 and the 1-
average of F is 4/3.

The Cohen-Lenstra heuristics have been checked by many numerical computa-
tions and they are very useful for understanding the behavior of class groups,
even if the results are conjectural. For example, they explain why it is so dif-
ficult to find a non-cyclic Cl0(K).
The first theoretical result was obtained by Davenport and Heilbronn who
proved (before the heuristics were formulated) that the average of the func-
tion 3r3(Cl(K)) is equal to 2 (resp. 4/3) in the case of imaginary (resp. real)
quadratic fields.
The Cohen-Lenstra heuristics extend to many other families of number fields,
and we refer to [3], [4], [15] for some generalizations.
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3 Heuristics on Tate-Shafarevich groups of el-

liptic curves

As with class groups, we are annoyed by Tate-Shafarevich groups of elliptic
curves. Thus, we use the analogy described in the first section and sketch the
work in [6] which shows how the Cohen-Lenstra philosophy can be adapted to
our case. To do this, we take into account the particular structure of Tate-
Shafarevich groups, i.e., the structure of groups of type S.

3.1 Rank 0 case

By analogy, we consider a C-valued function F defined on the isomorphism
classes of groups of type S.

Examples. We will look at the following ones:

Fp-triv(G) =

{
1 if Gp ' {0}
0 else

Fcyclic(G) =

{
1 if G is the square of a cyclic group
0 else

Fp-rank=2r(G) =

{
1 if rp(G) = 2r
0 else

Note that we simply write G for a group of type S instead of (G, β), since there
is only one group structure of type S for each group (up to isomorphism). We
consider the following limit:

MX,0
(F ) = lim

X→∞




∑

N(E)6X
F (X(E))

∑

N(E)6X
1


 (3.1)

where the sums are over all isomorphism classes of rank 0 elliptic curves whose
conductor is bounded by X (there are only finitely many such isomorphism
classes). As for class groups, we have two questions: does the limit exist? If
yes, what is its value? Furthermore, questions of this type are exactly what
we would like to answer...
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Definition 8. We define:

ζGS(z) =
∑

n>1

1

nz

∑

GS(n)

1

|AutS(G)|

ζGS ,F (z) =
∑

n>1

1

nz

∑

GS(n)

F (G)

|AutS(G)|

We can prove:

Theorem 9. We have:

ζGS(z) =
∞∏

j=1

ζ(2z + 2j + 1).

The main difference with finite abelian groups is that the function ζGS(z)
converges for z = 0 and that we have:

Corollary 10.

ζGS(0) =
∑

n>1

∑

GS(n)

1

|AutS(G)| =
∞∏

j=1

ζ(2j + 1).

So, we have to adapt the definition for average over groups of type S:

Definition 11. Let F be as above and α > 1 (we will see later why we need
α). Then, the 0-average of F over groups of type S is defined by:

MGS ,0(F, α) = lim
X→∞




∑

n6X

∑

GS(n)

F (G)|G|α
|AutS(G)|

∑

n6X

∑

GS(n)

|G|α
|AutS(G)|



.

The exact analogue of definition 1 would have been to take α = 0. But as we
have shown before, the denominator converges for α = 0 and this does not give
a relevant average. For α > 1 the denominator diverges. Another reason to
insert α in definition 11 is that for reasonable functions F , the limit MG,0(F, α)
does not depend on α if α > 1 (this fact is an application of a generalization of
theorem 2). In particular, it is not true that the limit does not depend on α if
α < 1. The same phenomenon already occurred for finite abelian groups; we
could take the weight |G|α/|Aut(G)| in (2.2) and the results would not have
depended on α for α > 0. Once again, the situation is analogous to the one of
class groups.
Since MG,0(F, α) does not depend on α for α > 1, we let:

MGS ,0(F ) = MGS ,0(F, 1).
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Then we can compute MG,0(F ) by using theorem 2 as for finite abelian groups.

For instance, the function ζGS(z − 1) =
∑

n
1
nz

∑
GS(n)

|G|
|AutS(G)| converges for

<(z) > 0 and satisfies the conditions of theorem 2. Thus we deduce the
following estimate for the denominator of MG,0(F ):

Corollary 12. As X tends to ∞ we have:

∑

n6X

∑

GS(n)

|G|
|AutS(G)| ∼

1

2

∞∏

j=1

ζ(2j + 1) log(X).

As regards the numerator, we expect that the function ζGS ,F (z−1) satisfies
the conditions of theorem 2 so that:

∑

n6X

∑

GS(n)

F (G)|G|
|AutS(G)| ∼ C log(X).

And we would have:

MGS ,0(F ) =
2C∏∞

j=1 ζ(2j + 1)
.

Now the heuristic idea is to assert that Tate-Shafarevich groups of rank 0 el-
liptic curves behave as random groups G of type S except that they have to
be weighted by the weight |G|/|AutS(G)|.

Fundamental heuristic assumption for rank 0 elliptic curves. For
all reasonable functions F we have:

MX,0
(F ) = MGS ,0(F ).

3.2 Rank 1 case

As for class groups, the higher rank cases are a little bit more technical. In
case of rank 1, we are interested in the following limit:

MX,1
(F ) = lim

X→∞




∑

N(E)6X
F (X(E))

∑

N(E)6X
1


 (3.2)

where now the sums are over all isomorphism classes of rank 1 elliptic curves
with conductor bounded by X.
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Definition 13. Let F be as above and u > 0. We define (cu(F, n))n>1 by:

∑

n>1

cu(F, n)

nz
=
ζGS ,F (z + u)ζGS(z)

ζGS(z + u)
.

The u-average of F over groups of type S is:

MGS ,u(F ) = lim
X→∞




∑

n6X
ncu(F, n)

∑

n6X

∑

GS(n)

|G|
|AutS(G)|



.

Remarks. For reasonable functions F , the average MGS ,u(F ) does not
depend on α > 1 if we replace in the definition ncu(F, n) by nαcu(F, n) and
|G| by |G|α. For u = 0, this is the same definition as in the section above.

Theorem 2 allows us to compute u-averages in many cases:

Proposition 14. Let F be as above and suppose that ζGS ,F (z−1) satisfies the
conditions of theorem 2. We have:

if u = 0 then MGS ,0 = lim
z→0

ζGS ,F (z − 1)

ζGS(z − 1)

if u > 0 then MGS ,u(F ) =
ζGS ,F (u− 1)

ζGS(u− 1)

Fundamental heuristic assumption for rank 1 elliptic curves. For
all reasonable functions F we have:

MX,1
(F ) = MGS ,1(F ).

Note that in [6], we formulated the heuristic for higher ranks by taking the
u/2-average for the family of rank u elliptic curves. So the heuristic assumption
here is a correction of [6] in the rank 1 case.

3.3 Examples

Let us consider the function F = Fp-triv. Then, as for finite abelian groups,
we have:

ζGS ,F (z) = ζGS(z)
∞∏

j=1

(
1− 1

p2z+2j+1

)
.

So we obtain the u-average of F :

MGS ,u(F ) =
∞∏

j=1

(
1− 1

p2u+2j−1

)
.
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Then, we deduce:
-The 0-probability that p divides the order of a group of type S is equal to:

f0(p) = 1−
∞∏

j=1

(
1− 1

p2j−1

)
=

1

p
+

1

p3
− 1

p4
+

1

p5
− 1

p6
· · · (3.3)

In particular f0(2) ≈ 0.58, f0(3) ≈ 0.36 and f0(5) ≈ 0.21.

-The 1-probability that p divides the order of a group of type S is equal to:

f1(p) = 1−
∞∏

j=1

(
1− 1

p2j+1

)
=

1

p3
+

1

p5
+

1

p7
− 1

p8
· · · (3.4)

In particular f1(2) ≈ 0.16, f1(3) ≈ 0.04 and f1(5) ≈ 0.01.

We also consider some other examples that can be found in [6].
-The u-average of the function F = Fcyclic is equal to:

MGS ,u(F ) =
∏

p

(
1− 1

p2
+

1

p2u+3

)
ζ(2)∏

j>1 ζ(2u+ 2j + 1)
.

In particular, MGS ,0(F ) ≈ 0.98.

-The u-average of F (G) = prp(G) is equal to:

1 + p1−2u. (3.5)

-The u-average of the function F = Fp-rank=2r is equal to:

MGS ,u(F ) =
p−r(2u+2r−1)

∏
j>1(1− 1/p2r)

∏

j>r+1

(1− 1/p2u+2j−1). (3.6)

The heuristics as well as their consequences are out of reach. Furthermore it is
difficult to check them numerically because there are too many elliptic curves
and Tate-Shafarevich groups seem to appear for large conductors. There is
no algorithm known to compute Tate-Shafarevich groups. The only thing we
can do is to compute the (conjectural) order of Tate-Shafarevich groups using
the Birch and Swinnerton-Dyer conjecture. Indeed all members in equation
(1.1) are easily computable except R(E) and |X(E)|. So if for some reason
one can compute R(E) (for rank 0 curves we simply have R(E) = 1), then
we can deduce |X(E)|. If we have many data we can compare them with the
heuristic predictions of type (3.3). We can also restrict the heuristics to some
natural sub-families of elliptic curves (quadratic twists) for which the analogy
with number fields seems to be even more deeper.
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4 Quadratic twist families

Let E be an elliptic curve defined over Q with conductor N and let L(E, s) =∑
n a(n)n−s be its L-function. From the work in [14], [12] and [1] E is known

to be modular. This implies that its L-function can be analytically continued
to the whole complex plane and satisfies a functional equation:

Λ(E, 2− s) = εΛ(E, s) (4.1)

where ε = ±1 is the sign of the functional equation and:

Λ(E, s) =

(√
N

2π

)s

Γ(s)L(E, s).

Note that the Birch and Swinnerton-Dyer conjecture implies ε = (−1)r where
r is the rank of E(Q). Let D be a fundamental discriminant (for simplicity we
assume (N,D) = 1). Then the twisted L-function:

L(E,D, s) =
∑

n

(
D

n

)
a(n)n−s

where
(
D
.

)
is the Kronecker symbol, corresponds to the quadratic twist ED of

E by D and has conductor ND = ND2. Then the function L(E,D, s) satisfies
a functional equation as (4.1) whose sign is εD =

(
D
−N
)
.

In this section, we consider the family of elliptic curves:

(ED)D where D runs over all fundamental discriminant.

In fact, there is another analogy between this family and the family of quadratic
imaginary number fields. Indeed, from the work of Waldsurger ([13]), the
values L(E,D, 1) are related to the coefficients c(|d|) of a 3/2-weight modular
form; more precisely:

L(E,D, 1) = κE|D|−1/2c(|D|)2 (4.2)

where κE is a constant depending only on E. Suppose that c(|d|) 6= 0 so that
ED has rank 0. Then replacing L(E,D, 1) by its value predicted by the Birch
and Swinnerton-Dyer conjecture, we deduce that the order |X(ED)| of the
Tate-Shafarevich group of the rank 0 curve ED is, up to some factors (namely
the Tamagawa numbers), the square of the coefficients of a 3/2-weight modu-
lar form. We have exactly the same phenomenon for class groups (without the
square). Indeed, the order of class groups of imaginary quadratic fields are, up
to some normalization (namely, we have to consider the Hurwitz class numbers
instead of the class numbers), the coefficients of a 3/2-weight modular form.
Furthermore, using (4.2), Rubinstein ([10]) performed huge numerical experi-
mentations and computed how often a given prime p divides the (conjectural)
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order of X(ED) for rank 0 quadratic twists of many elliptic curves E. His
numerical results are in close agreement with the prediction (3.3) given by the
heuristic except maybe for some “special” primes. These lead us to restrict
the heuristics to the family (ED).

If T is a set of prime numbers and F a function defined on isomorpism classes
of groups of type S, then we define the function F ◦T by F ◦T : G 7→ F (GT ),
where GT is the T -part of G.

Heuristic assumption for rank 0 quadratic twists. Let E be an el-
liptic curve defined over Q. Then there exists a finite set S of prime numbers
such that for all reasonable functions F we have:

lim
X→∞




∑

|D|<X
rk(ED)=0

F ◦ T (X(ED))

∑

|D|<X
rk(ED)=0

1




= MGS ,0(F ◦ T ) (4.3)

where the sum is over fundamental discriminants D such that the rank of ED

is 0 and where T is the set of prime numbers p with p 6∈ S.

Heuristic assumption for rank 1 quadratic twists. Let E be an el-
liptic curve defined over Q. Then there exists a finite set S of prime numbers
such that for all reasonable functions F we have:

lim
X→∞




∑

|D|<X
rk(ED)=1

F ◦ T (X(ED))

∑

|D|<X
rk(ED)=1

1




= MGS ,1(F ◦ T ) (4.4)

where the sum is over fundamental discriminants D such that the rank of ED

is 1 and where T is the set of prime numbers p with p 6∈ S.

Remark: It is actually not clear which prime numbers have to be excluded
form the discussion. Rubinstein’s huge numerical data show that some primes
behave in a rather special way. More precisely, those primes appear to be
maybe the prime 2 and the odd primes ` dividing the order of the torsion
sub-group of the curves belonging to the isogeny class of the curve E with the
smallest conductor in the family in question (perhaps due to the fact that, in
this case, the `-part of the class group of Q(

√
d) should have a weight on the

`-Selmer group of Ed. This is, indeed, what had been proved by Frey for some
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curves E [7]). However, the convergence for the prime 2 may be simply slower
than for the others and so seems to be a special prime even if it is not.

In [8] and [9], Heath-Brown1 studied the Selmer groups of the family of
quadratic twists:

ED : Dy2 = x3 − x.

When the rank of ED is 0 or 1, it is not difficult to obtain information about the
Tate-Shafarevich groups of ED from its Selmer group. Furthermore, Heath-
Brown considered all curves ED and not only those that have rank 0 or 1.
Nevertheless, there is a classical conjecture (the density conjecture) asserting
that on average the curves ED have either rank 0 or rank 1 (of course, this
can be true only on average). The random matrix theory predicts very precise
statements refining the density conjecture ([5]). Finally, the density conjecture
and Heath-Brown’s works imply the following rank 0 and rank 1 results:

Rank 0 case. Here we consider only D such that ED has rank 0.

- The average of the function 2rp(X(ED)) over the curves ED that have rank 0
is equal to 3.
- Let r ∈ N. The probability that r2(X(ED)) = 2r is equal to:

∞∏

j=1

(1 + 2−n)−1 2r∏
16j6r(2

j − 1)
(4.5)

Rank 1 case. Here we consider only D such that ED has rank 1.

- The average of the function 2rp(X(ED)) over the curves ED that have rank 1
is equal to 3/2.
- Let r ∈ N. The probability that r2(X(ED)) = 2r is equal to ([9]):

∞∏

j=1

(1 + 2−n)−1 2r−1

∏
16j6r−1(2j − 1)

. (4.6)

These results should be compared with (3.5) and (3.6) with p = 2, u = 0 and
u = 1. In fact, a little computation shows that they all agree! (Heath Brown’s
results and the link with the heuristics have been pointed out to me by E.
Kowalski whom I thank here). In Heath-Brown’s paper, it is suggested that
the convergence should be extremely slow, so it would not be very surprising if
the prime 2 behaved like a special prime in numerical computations although
it is not. Heath-Brown’s results and Rubinstein’s data make the heuristics on
Tate-Shafarevich groups even more believable in the case of quadratic twist
families.

1Editors’ comment: See also the article by D.R. Heath-Brown in this volume.
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A Note on the 2-Part of X for the
Congruent Number Curves

D.R. Heath-Brown

The purpose of this note is to give a brief exposition of the results of
the author’s work [1,2]. The congruent number problem is described by the
quadratic twists of the elliptic curve

E : y2 = x3 − x,

that is to say, by the curves

ED : Dy2 = x3 − x

for positive square-free integers D. The L-functions for these twists have even
functional equation for D ≡ 1, 2, 3 (mod 8), and odd functional equation for
D ≡ 5, 6, 7 (mod 8). The group X is described in Silverman [3; page 297].
In order to describe the 2-part of X(D) it will be convenient to make the
following hypothesis, which we shall assume throughout this note.

Hypothesis. There are O(X(logX)−2) positive square-free integers D ≤
X with D ≡ 1, 2 or 3 (mod 8) such that ED has rank different from zero.
Similarly there are O(X(logX)−2) positive square-free integers D ≤ X with
D ≡ 5, 6 or 7 (mod 8) such that ED has rank different from one.

The order of the Selmer group S(2) is connected to the 2-part of X as
follows. Let #S(2) = 22+s(D), so that s(D) is the upper bound for the rank of
ED which arises from the 2-descent process, see Silverman [3; page 281]. In
the appendix to [2] Monsky showed that s(D) is even for integers D ≡ 1, 2, 3
(mod 8), and odd for values D ≡ 5, 6, 7 (mod 8). Now define

X2(D) = {g ∈X(D) : g has order 1 or 2}.

Then if D ≡ 1, 2, 3 (mod 8) and ED has rank zero, we have

#X2(D) = 2s(D),

while if D ≡ 5, 6, 7 (mod 8) and ED has rank one, then

#X2(D) = 2s(D)−1.
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The main result of [2] gives the frequency with which each value of s(D)
occurs. Let

λ =
∞∏

n=0

(1− 2−2n−1) = 0.4194 . . .

and set

dk = λ
2k∏

1≤j≤k(2
k − 1)

, (k = 0, 1, 2, . . .).

Moreover we define

N(X;h) = #{D ≤ X : D square-free, D ≡ h (mod 8)},

Ns(X, k;h) = #{D ≤ X : D square-free, s(D) = k, D ≡ h (mod 8)}
and

NX(X, k;h) = #{D ≤ X : D square-free, #X2(D) = 22k, D ≡ h (mod 8)}.

Theorem 1. If h = 1 or 3 then

Ns(X, 2k;h)

N(X;h)
→ d2k, (X →∞),

while if h = 5 or 7 then

Ns(X, 2k + 1;h)

N(X;h)
→ d2k+1, (X →∞).

Thus, under our hypothesis, it follows that if h = 1 or 3 then

NX(X, k;h)

N(X;h)
→ d2k, (X →∞),

while if h = 5 or 7 then

NX(X, k;h)

N(X;h)
→ d2k+1, (X →∞).

It is interesting to investigate the situation in which one restricts the num-
ber ω(D) of prime factors of D. When D is prime one finds that s(D) = 2
for every D ≡ 1 (mod 8) and s(D) = 0 for every D ≡ 3 (mod 8). When D
is a product of two primes and D ≡ 1 (mod 8) the cases S(D) = 0, 2, 4 occur
with frequency 1/4, 5/8, 1/8 , while if D ≡ 3 (mod 8) the cases S(D) = 0, 2
each occur with frequency 1/2. As the number of prime factors grows these
frequencies tend to the values d0, d2, d4, . . ., whether one restricts to values
D ≡ 1 (mod 8) or to D ≡ 3 (mod 8). Thus one sees firstly that, for ω(D)
small, the proportions depend heavily on the congruence value of D modulo
8, and secondly that the proportions differ from their limiting values quite
significantly. The following table illustrates this. The figures aggregate the
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k = 3 k = 5 k = 10 k = 20 k =∞
s(D) = 0 0.1875 0.1785 0.1905 0.2083 0.2097
s(D) = 1 0.3641 0.3650 0.4004 0.4163 0.4194
s(D) = 2 0.2607 0.2719 0.2883 0.2841 0.2796
s(D) = 3 0.1220 0.1239 0.0994 0.0784 0.0799
s(D) = 4 0.0531 0.0441 0.0174 0.0120 0.0107
s(D) = 5 0.0102 0.0135 0.0033 0.0009 0.0007
s(D) = 6 0.0024 0.0029 0.0006 0.0000 0.0000
s(D) = 7 0.0000 0.0002 0.0001 0.0000 0.0000

Table 1.1: Estimated Frequency of Selmer Ranks for ω(D) = k

cases in which D ≡ 1 (mod 8) and D ≡ 3 (mod 8), and also the cases in which
D ≡ 5 (mod 8) and D ≡ 7 (mod 8).

The table shows that when D has rather few prime factors the proportion
of values s(D) = 0, 1 is less than in the limiting case. Even with ω(D) = 10
the agreement is not very good. The reader should recall that for D ≤ 1010,
say, one typically has ω(D) around 3. Thus one cannot expect the currently
available numerical data to show good agreement with the theoretical limiting
behaviour.

For the proof of the theorem, the starting point is the fact that the Selmer
group S(2) has as elements those pairs

(a, b) ∈
(
Q×

(Q×)2

)2

for which the simultaneous equations

abx2 +Dy2 = az2, abx2 −Dy2 = bw2 (1.1)

have non-trivial solutions in every completion of Q. (There is a minor abuse of
notation here, identifying a ∈ Q×/(Q×)2 with one of its coset representatives.)
When D is odd one then finds, see [1], that 2s(D) is given by the number of
pairs for which a and b are positive divisors of D. Moreover the local conditions
reduce to the requirement that the system (1.1) has solutions in Qp for every
prime divisor p of D. Finally, this last condition is satisfied if and only if the
four equations

abx2 +Dy2 = az2, abx2−Dy2 = bw2, 2abx2 = az2 + bw2, 2Dy2 = az2− bw2

are individually solvable in Qp.
This analysis immediately shows that s(D) ≤ 2ω(D). Moreover one can

easily read off the frequency of the different values of s(D) when D has at
most two prime factors, say. The theorem given above however requires a
computation of all the integer moments of 2s(D), and this turns out to require
a rather lengthy combinatorial argument.
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2-Descent Through the Ages

Sir Peter Swinnerton-Dyer

The main object of this note, which expands an expository lecture given
at the conference, is to provide the reader with an account of the process of
2-descent on elliptic curves defined over Q which have the form

Γ : y2 = (x− c1)(x− c2)(x− c3)

— that is, elliptic curves all of whose 2-division points are rational. I have
also included a description of the algorithm of Cassels [1] for 4-descents. My
intention is to provide the tools needed for applications, in a way which requires
minimal effort on the reader’s part. I have therefore not included proofs,
except in Appendix 2 which contains a proof/algorithm the full details of which
may be needed for some applications. Instead, I have provided the necessary
references.

This note describes the processes over Q. But the statements of the theory
over an arbitrary algebraic number field are not very different, except that the
analogues of certain explicit results relating to the prime 2 are not known. On
the other hand, some of the proofs are much harder.

We can clearly take the ci to be integers. Let B, the set of bad primes,
be any finite set of primes containing 2, ∞ and all the odd primes dividing
(c1 − c2)(c1 − c3)(c2 − c3); thus B contains the primes of bad reduction for Γ.
If B also contains some primes of good reduction, that is harmless.

The basic version of 2-descent, which goes back to Fermat, is as follows.
(Good places to find proofs of the results that follow are Silverman [5] or
Husemöller [3].) To any rational point (x, y) on Γ there correspond rational
m1,m2,m3 with m1m2m3 = m2 6= 0 such that the three equations

miy
2
i = x− ci for i = 1, 2, 3 (1.1)

are simultaneously soluble. We can multiply the mi by non-zero squares, so
that for example we can require them to be square-free integers; indeed one
should really think of them as elements of Q∗/Q∗2, with a suitable interpreta-
tion of the equations which involve them. Denote by C(m) the curve given by
the three equations (1.1), where m = (m1,m2,m3). Looking for solutions of Γ
is the same as looking for quadruples x, y1, y2, y3 which satisfy (1.1) for some
m. For this purpose we need only consider the finitely many m for which the
mi are units at all primes outside B; for if any mi is divisible to an odd power
by some prime p not in B then Γ is already insoluble in Qp.
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One question of interest is the effect of twisting on the arithmetic properties
of the curve Γ. If b is a nonzero rational, the twist of Γ by b is defined to be
the curve

Γb : y2 = (x− bc1)(x− bc2)(x− bc3),

where we can regard b as an element of Q∗/Q∗2. The curve Γb is often written
in the alternative form

v2 = b(u− c1)(u− c2)(u− c3).

The analogue of (1.1) for Γb is

miy
2
i = x− bci for i = 1, 2, 3;

we shall call the curve given by these three equations Cb(m). It is often natural
to compare C(m) and Cb(m) for the same m.

Provided one treats the mi as elements of Q∗/Q∗2, the triples m form an
abelian group under componentwise multiplication:

m′ ×m′′ 7→m′m′′ = (m′1m
′′
1,m

′
2m
′′
2,m

′
3m
′′
3).

The m for which C(m) is everywhere locally soluble form a finite subgroup,
called the 2-Selmer group. This is computable, and it contains the group
of those m for which C(m) is actually soluble in Q. This smaller group is
Γ(Q)/2Γ(Q), where Γ(Q), the group of rational points on Γ, is the Mordell-
Weil group of Γ. The quotient of the 2-Selmer group by this smaller group
is 2X, the group of those elements of the Tate-Shafarevich group which are
killed by 2. One of the key conjectures in the subject is that the order of 2X
is a square.

The process of going from the curve Γ to the set of curves C(m), or the
finite subset which is the 2-Selmer group, is called a 2-descent, or sometimes
a first descent, and the curves C(m) themselves are called 2-coverings. The
reason for this terminology is that there is a commutative diagram

Γ −→ Γ
‖ ↗
C(m)

(1.2)

in which the left hand map is biregular (but defined over C rather than Q), the
top map is multiplication by 2 and the diagonal map is given by y = my1y2y3.
A 2-covering which is everywhere locally soluble, and therefore in the 2-Selmer
group, can also be written in the form

η2 = f(ξ) where f(ξ) = aξ4 + bξ3 + cξ2 + dξ + e,

and many 2-coverings do arise in this way; but a 2-covering which is not in the
2-Selmer group cannot always be put into this form.
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We now put this process into more modern language. In what follows,
italic capitals will always denote vector spaces over F2, the finite field of two
elements, and each of p and q will be either a finite prime or ∞. Write

Yp = Q∗p/Q
∗2
p , YB = ⊕p∈BYp.

Let Vp denote the vector space of all triples (µ1, µ2, µ3) with each µi in Yp
and µ1µ2µ3 = 1; and write VB = ⊕p∈BVp. This is the best way to introduce
these spaces, because it preserves symmetry; but the reader should note that
the prevailing custom in the literature is to define Vp as Yp × Yp, which is
isomorphic to the Vp defined above but not in a canonical way. Next, write
XB = o∗B/o

∗2
B where o∗B is the group of nonzero rationals which are units outside

B; and let UB be the image in VB of the group of triples (m1,m2,m3) such that
the mi are in XB and m1m2m3 = 1. It is known that the map XB → YB is
an embedding and dimUB = 1

2
dimVB; both these depend on the requirement

that B contains 2 and ∞. Finally, if (x, y) is a point of Γ defined over Qp

other than a 2-division point then the product of the three components in the
triple (x− c1, x− c2, x− c3) is y2 which is in Q∗2p ; so this triple has a natural
image in Vp. We can supply the images of the 2-division points by continuity;
for example the image of (c1, 0) is

((c1 − c2)(c1 − c3), c1 − c2, c1 − c3), (1.3)

and the image of the point at infinity is the trivial triple (1, 1, 1), which is also
the product of the three triples like (1.3). Thus we obtain a map Γ(Qp)→ Vp.
This map, which is called the Kummer map, is a homomorphism. We denote
its image by Wp; clearly Wp is the set of those triples m for which (1.1) is
soluble in Qp. It is sometimes useful to have explicit descriptions of the Wp, so
these are given in Appendix 1. The 2-Selmer group of Γ can now be identified
with UB ∩WB where WB = ⊕p∈BWp; for as was noted above, (1.1) is soluble
at every prime outside B if and only if the elements of m are in XB.

Over the years, many people must have noticed that

dimWB = dimUB = 1
2

dimVB. (1.4)

The next major step, which explains and may well have been inspired by this
relation, was taken by Tate. He introduced the bilinear form ep on Vp × Vp,
defined by

ep(m
′,m′′) = (m′1,m

′′
1)p(m

′
2,m

′′
2)p(m

′
3,m

′′
3)p.

Here (u, v)p is the multiplicative Hilbert symbol with values in {±1}, defined
by

(u, v)p =

{
1 if ux2 + vy2 = 1 is soluble in Qp,

−1 otherwise.

The Hilbert symbol is symmetric and multiplicative in each argument:

(u, v)p = (v, u)p and (u1u2, v)p = (u1, v)p(u2, v)p.
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Effectively it is a replacement for the quadratic residue symbol, with the ad-
vantage that it treats the primes 2 and ∞ in just the same way as any other
prime. Its other key property is the Hilbert product formula

∏
p
(u, v)p = 1,

where the product is taken over all p including ∞; the left hand side is mean-
ingful because (u, v)p = 1 whenever p is an odd prime at which u and v are
units.

The bilinear form ep is non-degenerate and alternating on Vp × Vp; we use
it to define eB =

∏
p∈B ep, which is a non-degenerate alternating bilinear form

on VB×VB. (For a bilinear form with values in {±1}, “symmetric” and “skew-
symmetric” are the same and they each mean that e(m′,m′′) = e(m′′,m′);
“alternating” means that also e(m,m) = 1.) It is known from class field
theory that UB is a maximal isotropic subspace of VB. Tate showed that Wp is
a maximal isotropic subspace of Vp, and therefore WB is a maximal isotropic
subspace of VB. (The proof of this, which is difficult, can be found in Milne
[4].) This explains (1.4); and it also shows that the 2-Selmer group of Γ can
be identified with both the left and the right kernel of the restriction of eB to
UB ×WB.

For both aesthetic and practical reasons, one would like to show that this
restriction is symmetric or skew-symmetric — these two properties being the
same. But to make such a statement meaningful we need an isomorphism
between UB and WB; and though they have the same structure as vector spaces
it is not obvious that there is a natural isomorphism between them. The
way round this obstacle was first shown in [2]. It requires the construction
inside each Vp of a maximal isotropic subspace Kp such that VB = UB ⊕ KB
where KB = ⊕p∈BKp. Assuming that such spaces Kp can be constructed, let
tB : VB → UB be the projection along KB and write

U ′B = UB ∩ (WB +KB), W ′
B = WB/(WB ∩KB) =

⊕
p∈B

W ′
p

where W ′
p = Wp/(Wp ∩Kp). The map tB induces an isomorphism

τB : W ′
B → U ′B,

and the bilinear function eB induces a bilinear function

e′B : U ′B ×W ′
B → {±1}.

The bilinear functions U ′B × U ′B → {±1} and W ′
B × W ′

B → {±1} defined
respectively by

θ[B : u′1 × u′2 7→ e′B(u′1, τ
−1
B (u′2)) and θ]B : w′1 × w′2 7→ e′B(τBw

′
1, w

′
2) (1.5)

are symmetric. (For the proof, see [2] or [8].) Here the images of w′1 × w′2
under the second map and of τBw′1 × τBw′2 under the first map are the same.
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The 2-Selmer group of Γ is isomorphic to both the left and the right kernel of
e′B, and hence also to the kernels of the two maps (1.5).

There is considerable freedom in choosing the Kp, and this raises three
obvious questions:

• Is there a canonical choice of the Kp?

• How small can we make U ′ and W ′?

• Can we ensure that the functions (1.5) are not merely symmetric but
alternating?

These questions were first raised and also to a large extent answered in [6];
proofs of the assertions which follow can be found there. The motive for
ensuring that the functions (1.5) are alternating is that it implies that the
ranks of these functions are even; this means that their coranks, which are
equal to the dimension of the 2-Selmer group, are congruent mod 2 to dimU ′B
and dimW ′

B.
The answer to the first question appears to be negative, though there is

little freedom in the optimum choice of the Kp — particularly if one wishes
to obtain not merely Lemma 1.1 but Theorem 1.2. Since U ′B ⊃ UB ∩ WB,
the best possible answer to the second question would be that we can achieve
U ′B = UB ∩WB; we shall do this by satisfying the stronger requirement

WB = (UB ∩WB)⊕ (KB ∩WB). (1.6)

For suppose that (1.6) holds; then WB +KB = (UB ∩WB) +KB and it follows
immediately that

U ′B = UB ∩ (WB +KB) = UB ∩WB. (1.7)

The motivation for (1.6) is that we want to make WB ∩KB as large as possible
— that is, to choose KB so that as much of it as possible is contained in WB.
But because KB must be complementary to UB, only the part of WB which is
complementary to WB ∩ UB is available for this purpose.

Since the 2-Selmer group UB∩WB is identified with the left and right kernels
of each of the functions (1.5), if (1.7) holds then these functions are trivial and
therefore alternating. The formal statement of all this is as follows.

Lemma 1.1. We can choose maximal isotropic subspaces Kp ⊂ Vp for each p
in B so that VB = UB ⊕KB. We can further ensure that

WB = (UB ∩WB)⊕ (KB ∩WB),

which implies U ′B = UB ∩WB. If so, the functions θ[B and θ]B defined in (1.5)
are trivial.
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For some applications it is convenient to have an explicit description of the
construction of the Kp; this is given in Appendix 2. But the other properties
of the Kp chosen in this way are not at all obvious. Hence it is advantageous
to consider other recipes for choosing the Kp, for which (1.6) does not hold
but we can still prove that the functions (1.5) are alternating.

For this purpose we write B as the disjoint union of B′ and B′′, where
we shall always suppose that 2 and ∞ are both in B′. For any odd prime p
we denote by Tp the subset of Vp consisting of those triples (µ1, µ2, µ3) with
µ1µ2µ3 = 1 for which each µi is in o∗p/o

∗2
p — that is, each µi is the image of

a p-adic unit. The main point of the following theorem is that for p in B ′′ it
enables us to replace the complicated inductive definition of Kp used in the
proof of Lemma 1.1 by the much simpler choice Kp = Tp. How one chooses B′′
depends on the particular application which one has in mind.

Theorem 1.2. Let B be the disjoint union of B′ ⊃ {2,∞} and B′′. We can
construct maximal isotropic subspaces Kp ⊂ Vp such that VB = UB ⊕KB,

WB′ = (UB′ ∩WB′)⊕ (KB′ ∩WB′) (1.8)

and Kv = Tv for all v in B′′; and (1.8) implies that U ′B′ = UB′ ∩WB′. Moreover

U ′B = ∗U
′
B′ ⊕ τBW ′

B′′ = ∗U
′
B′ ⊕

(
⊕p∈B′′τBW ′

p

)
, (1.9)

and the restriction of θ[B to ∗U ′B′ × ∗U ′B′ is trivial.
If B′ also contains all the odd primes p such that the vp(ci − cj) are not

all congruent mod 2, then we can choose the Kp for p in B′ so that also θ[B is
alternating on U ′B.

The appearance of ∗U ′B′ in and just after (1.9) calls for some explanation.
Let u be any element of UB′ ; then u is in UB. Moreover, for p in B′′ the image
of u in Vp is in Tp = Kp and therefore in Kp+Wp; hence u is in U ′B. In this way
we define a map U ′B′ → U ′B which is clearly an injection and which we denote
by ∗.

Lemma 1.1 is the special case of Theorem 1.2 in which B′ = B and B′′ is
empty. But the proof of Lemma 1.1 is a necessary step (and indeed the most
substantial step) in the proof of Theorem 1.2. Indeed, to prove Theorem 1.2
we construct the Kp for p in B′ according to the recipe in Appendix 2; for
the final sentence of the theorem we need the particular version of the recipe
which involves the functions φi.

The main application of Theorem 1.2 is to twisted curves Γb, where we
can clearly take b to be an integer. Let S denote the set of bad primes for Γ
itself — that is, 2,∞ and the odd primes dividing (c1 − c2)(c1 − c3)(c2 − c3);
and let B ⊃ S be the set of bad primes for Γb. If we are to apply any part
of Theorem 1.2, B must also contain all the odd primes dividing b; and such
applications are much simpler when b is a unit at every prime of S. (We
can always arrange this by treating Γb as the twist of Γc by b/c, where c is the
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largest divisor of b which is a unit outside S.) To describe the effect of twisting,
we shall denote by db the dimension of the 2-Selmer group of Γb regarded as
a vector space over F2; we write d = d1 for the dimension of the 2-Selmer
group of Γ itself. It is now possible to prove results about db − d, the change
in the dimension of the 2-Selmer group as one goes from Γ to Γb. There is
reason to expect that statements about the parities of d and db will be simpler
and much easier to prove than statements about their actual values. The two
major statements known about db are Lemma 1.3 and Theorem 1.5; Lemma
1.3 is an easy consequence of the last sentence of Theorem 1.2, and Theorem
1.5 is an easy consequence of Lemma 1.4 below.

Lemma 1.3. If b is in o∗p for every p ∈ S, then db ≡ dim(US ∩WS) mod 2
where WS = ⊕p∈SWp and the Wp must be defined with respect to Γb and not
with respect to Γ. Thus db mod 2 only depends on the classes of b in the k∗p/k

∗2
p

for p in S.

To prove Lemma 1.4 we need to take B′ = S \ {p}; thus the last sentence
of Theorem 1.2 is not applicable though the rest of that theorem is.

Lemma 1.4. Let p be an odd prime in S such that

vp(c1 − c2) > 0, vp(c1 − c3) = vp(c2 − c3) = 0.

Let b in k∗ be such that b is in k∗2q for all q in S other than p and b is a
quadratic non-residue at p. Then d and db have opposite parities.

It is not hard to prove the analogue of Lemma 1.4 for the case p = ∞,
though the proof falls outside the machinery described in this note. The com-
bination of this result and Lemma 1.4 yields Theorem 1.5. (The analogue
of Lemma 1.4 for p = 2 can be confidently asserted, on the basis of a large
amount of numerical evidence, and the proof of it probably requires no new
ideas. But even the statement involves so extensive a separation of cases that
it is unlikely soon to appear in print.)

Theorem 1.5. Let b′, b′′ in k∗ be such that b′/b′′ is a unit at all p ∈ S and
b′/b′′ ≡ 1 mod 8. Let S∗ be the set of p ∈ S for which b′/b′′ is not in k∗2p . Let
S∗∗ consist of the finite odd p in S∗ for which the vp(ci − cj) are not all equal
and the smallest two of them are even, together with ∞ if b′/b′′ < 0. Then

db′ − db′′ ≡ #S∗∗ mod 2.

We can define a 4-covering and a 4-descent (sometimes called a second
descent) by extension of the diagram (1.2). Let C be a 2-covering of Γ; then a 4-
covering of Γ above this 2-covering is a curve D which fits into the commutative
diagram

Γ −→ Γ −→ Γ
‖ ‖ ↗
D −→ C
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in which the vertical maps are biregular (but defined over C rather than Q) and
each upper map is multiplication by 2. If C is everywhere locally soluble, we
say that it admits a second descent if we can find such a D which is everywhere
locally soluble. If C is actually soluble in Q, then it certainly admits a second
descent; thus carrying out a second descent is a way of replacing the 2-Selmer
group by a hopefully smaller group which however still contains Γ(Q)/2Γ(Q).
A second descent may therefore refine the information about the Mordell-Weil
group which is obtained from the 2-descent.

In its classical form, the process of 4-descent was constructive but it was
arithmetically unattractive, largely because it involved a field extension. But
Cassels [1] has shown how to determine which elements of the 2-Selmer group
do admit a second descent, while working entirely in Q. He constructs an
alternating bilinear form g on the 2-Selmer group, whose kernel consists of
exactly those elements which admit a second descent. Let S again be the
set of bad primes for Γ, with S ⊃ {2,∞}, and let m′ and m′′ be two triples
in US which represent elements of the 2-Selmer group of Γ. If i, j, k is any
permutation of 1, 2, 3 we denote by Ci(m′) the conic

m′jy
2
j −m′ky2

k = (ck − cj)y2
0. (1.10)

In view of (1.1) there is a map C(m′) → Ci(m′); so Ci(m′) is everywhere
locally soluble. Because Ci(m′) is a conic, this implies that it is soluble in
Q; so choose a rational point Pi on Ci(m′) and let Li(y0, yj, yk) = 0 be the
equation of the tangent to Ci(m′) at Pi. By abuse of language, we can treat Li
as a homogeneous linear form in y0, yj, yk; strictly speaking, it is only defined
up to multiplication by an element of Q∗, but it will not matter which multiple
we choose. For each p in S, choose a p-adic point Qp on the affine curve C(m′).
Then g is defined by

g(m′,m′′) =
∏

p∈S

∏
i
(Li(Qp),m

′′
i )p

where the bracket on the right is as usual the Hilbert symbol.

APPENDIX 1 — Explicit description of the Wp

The main purpose of this Appendix is to give an explicit description of the
Wp. The calculations are sometimes simplified by using the fact that Wp is
isotropic and contains the three triples like (1.3); thus if m is in Wp then the
three results like

(c1 − c2,m3)p = (c1 − c3,m2)p

all hold. The case p = ∞, which is trivial, is Lemma 1.7. The case when p
is odd, the simplest proof of which can be found in [6], is Lemma 1.7. The
results for the case p = 2 are much more complicated; they can be found in [7]
but are not reproduced here.
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Lemma 1.6. After renumbering, suppose that c1 > c2 > c3. Then W∞ consists
of the classes of (1, 1, 1) and (−1,−1, 1).

In Lemma 1.7 and Theorem 1.8, a1 ∼ a2 will mean that a1/a2 is in k∗2p .

Lemma 1.7. Let p be an odd prime.
If p divides all the ci − cj to the same even power, then Wp = (o∗p/o

∗2
p )2. If

p divides all the ci− cj to the same odd power, then Wp consists of the classes
of (1, 1, 1) and the three triples like (1.3).

Now suppose that p does not divide all the ci− cj to the same power. After
renumbering, let

vp(c1 − c2) > vp(c1 − c3) = vp(c2 − c3).

Denote by η the class of c1− c2, by ε the class of c1− c3 and c2− c3, and by ν
the class of quadratic non-residues mod p.

If v(ε) is odd then Wp consists of the classes of

(1, 1, 1), (ηε, η, ε), (−η,−ηε, ε), (−ε,−ε, 1).

If v(η) is odd and v(ε) even then Wp consists of the classes of

(1, 1, 1), (ηε, η, ε), (ν, ν, 1), (νηε, νη, ε).

If v(η) and v(ε) are both even and ε ∼ ν then Wp consists of the classes of

(1, 1, 1), (ν, ν, 1), (ν, 1, ν), (1, ν, ν).

If v(η) and v(ε) are both even and ε ∼ 1 then Wp consists of the classes of

(1, 1, 1), (ν, ν, 1), (p, p, 1), (pν, pν, 1).

A number of people have proved results of the form: let p be in S and
assume that C(m) is locally soluble at all primes other than perhaps p; then
provided that certain local conditions on Γ hold, C(m) is also locally soluble at
p. The best approach to this kind of result is as follows. For any permutation
i, j, k of 1, 2, 3 let Ck(m) denote the conic

miy
2
i −mjy

2
j = (cj − ci)y2

0,

this being essentially the same as the notation of (1.10). The existence of
a map C(m) → Ck(m) implies that Ck(m) is also locally soluble everywhere
except possibly at p. Since Ck(m) is a conic, it follows that Ck(m) is also
locally soluble at p — a condition which is equivalent to

(mi(cj − ci),mk)p = 1. (1.11)

Hence C(m) is locally soluble at p provided that this is implied by the local
solubility of the three Ck(m′) at p — that is, by the three conditions like (1.11).
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The question is under what local conditions on Γ at p this holds. Such results
can be read off from the description of Wp; but in fact we can decide this
question without knowing Wp. For we do know that the order of Wp is 2, 4
or 8 according as p is ∞, odd or 2. It is therefore enough to count the set
of triples m which satisfy the three equations like (1.11); for this set contains
Wp, so that it is equal to Wp if and only if it has the same order as Wp. Even
when p = 2, this calculation is trivial to program.

The conclusions for p = ∞ and p odd are given in the following theorem.
Those for p = 2 are too complicated to justify explicit statement.

Theorem 1.8. Suppose that C(m) is everywhere locally soluble except possibly
at one prime p which is in S. If p = ∞ then C(m) is also locally soluble
at p. If p is odd then C(m) is also locally soluble at p except perhaps when
ci − ck ∼ cj − ck ∼ 1 for some permutation i, j, k of 1, 2, 3.

APPENDIX 2 — Construction of the Kp

In this Appendix we show how to construct the Kp. We do in fact prove
a more general result, but this is only because otherwise we would be forced
into a needlessly complicated notation. The reader will see that (subject to
the introduction of the temporarily mysterious functions φi) the hypotheses
of Lemma 1.9 mimic the structure described in the main body of the text.
I give here only that part of the proof which is really an algorithm for the
construction; a complete proof can be found in [6].

Lemma 1.9. Let the Vi be n vector spaces over F2, each equipped with a non-
degenerate additive alternating bilinear form ψi with values in F2. Denote by
ψ the sum of the ψi, which is a non-degenerate bilinear form on V = ⊕Vi. For
each i let Wi be maximal isotropic in Vi, and let U be maximal isotropic in V
with respect to ψ. Then there exist maximal isotropic subspaces Ki ⊂ Vi such
that V = U ⊕K and

W = (U ∩W )⊕ (K ∩W ) (1.12)

where W = ⊕Wi and K = ⊕Ki. Moreover U ∩ (W +K) = U ∩W .
Suppose also that there are functions φi on Vi with values in F2 which

satisfy
φi(ξ + η) = φi(ξ) + φi(η) + ψi(ξ, η) (1.13)

for any ξ, η in Vi, and let φ on V be the sum of the φi. Assume that φ is trivial
on U and φi is trivial on Wi. Then we can further ensure that φi is trivial on
Ki and therefore φ is trivial on K.

Proof If any Vi has dimension greater than 2, we can decompose it as a
direct sum of mutually orthogonal subspaces of dimension 2, on each of which
the restriction of the bilinear form ψi is non-degenerate and each of which meets
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Wi in a subspace of dimension 1. This only reduces our freedom to choose the
Ki, and the triviality of φi on the old Ki will follow from its triviality on the
new and smaller Ki by (1.13). Thus we can assume that every Vi has dimension
2 and every Wi has dimension 1. We proceed by induction on n, the case n = 0
being trivial.

We shall assume that the φi exist, noting in the appropriate place how to
modify the argument to prove the first part of the lemma without using the
existence of the φi. If we regard Wn as a subspace of V , either Wn ⊂ U or
Wn is not contained in U and therefore meets it only in the origin. In each of
these cases, we shall choose an αi in Vi with φi(αi) = 0 and use it to generate
Ki. After reordering, we can assume that either Wn is not contained in U or
every Wi is contained in U and therefore W ⊂ U .

Since U is isotropic it cannot contain Vi; so if Wn ⊂ U and therefore
Wi ⊂ U for each i, then each Vi contains just two elements which do not lie in
U . Denote them by α′i and α′′i , and let βi be the nontrivial element of Wi; thus
α′′i = α′i + βi. Since φi(βi) = 0 it follows from (1.13) and the non-degeneracy
of ψi on Vi that

φi(α
′
i) + φi(α

′′
i ) = ψi(α

′
i, βi) = 1;

choose αi to be whichever of α′i and α′′i satisfies φi(αi) = 0. (If we do not
assume the existence of the φi then we can take αi to be either of α′i and α′′i .)
Let Ki be the vector space generated by αi; thus

Wi = U ∩Wi = (U ∩Wi)⊕ (Ki ∩Wi)

for each i, which implies (1.12). Moreover U ⊃ W and therefore U = W
because U and W have the same dimension. So

V = ⊕Vi = ⊕(Wi ⊕Ki) = W ⊕K = U ⊕K.

If U does not contain Wn, then the non-trivial element of Wn is not in U .
Denote this element by αn, so that φn(αn) = 0 by hypothesis. Let Kn be the
vector space generated by αn; thus Kn = Wn and

Wn = (U ∩Wn)⊕ (Kn ∩Wn). (1.14)

The construction now proceeds by induction on n. Write

V − = V1 ⊕ . . .⊕ Vn−1, U− = V − ∩ (U ⊕Wn). (1.15)

It is straightforward to show that U− is maximal isotropic in V −. For the pair
U−, V − we must replace the question whether U ⊃ W by the question whether
U ⊕Wn contains W− = W1⊕ . . .⊕Wn−1. By the induction hypothesis for the
pair U− ⊂ V −, there exist Ki maximal isotropic in Vi for each i < n such that
if K− = (K1 ⊕ . . .⊕Kn−1) then V − = U− ⊕K− and

W− = (U− ∩W−)⊕ (K− ∩W−). (1.16)
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The need to check the remaining details of the argument can be circumvented
by an appeal to Cassels’ Axiom: all vector space theorems are trivial.

When we apply Lemma 1.9 to the construction of the Kp for p in B′ and
the proof of Theorem 1.2, we replace i by p and ψi by ep; but note that we
have chosen to write ep multiplicatively and ψi additively. For m in Vp we take
φp(m) to be any one of the expressions

(mi(ci − cj)(ci − ck),mj(cj − ci)(cj − ck))p,

whose values are easily shown to be equal. The significance of φp is as follows.
The antipodal involution (x, y) 7→ (x,−y) on Γ induces an involution on each
2-covering C(m); in the notation of (1.1) this involution reverses the signs of
y1, y2, y3. The quotient of C(m) by this involution is a smooth projective curve
D(m) of genus 0, which is given by

(c2 − c3)m1y
2
1 + (c3 − c1)m2y

2
2 + (c1 − c2)m3y

2
3 = 0; (1.17)

and φp(m) is just the class [D(m)] as an element of Br kp.
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O(), big-O, 7
R, regulator, 21
∆, Vanvermonde, 217
∆, discriminant, 9
Fp, finite field with p elements, 110
Ω, real period, 21
γL(s), Gamma factor, 56
λE(p), also called ap, 72
�, less-than-less-than, 7
f(E), conductor, 18
µ, Möbius function, 20
X, Tate-Shafarevich group, 22
∼, asymptotic, 7
ε, sign of the functional equation,

56
εp, sign of the Gauss sum, 77
o(), little-o, 7
( ··), Legendre symbol, 17
2-Selmer group, 35, 37
2-descent, 345
4-descent, 351

absolutely irreducible, 112
additive reduction, 18
analytic rank, 30
ap, 17
approximate functional equation, 40
asymptotic to, 7
attraction, 65
average rank, 72

Barnes G-function, 98, 102
G(1

2
), 254

big-O, 7
Birch and Swinnerton-Dyer

for twists, 201
full form, 21
over a number field, 247
simplest form, 20

Brandt matrix, 267, 276, 280, 291
BSD, see Birch and Swinnerton-Dyer

canonical divisor, 120

canonical height, 21
Cassels pairing, 24, 325
Cebotarev density theorem, 123, 191
central value

computing, 260
characteristic

of a field, 110
characteristic polynomial, 58, 97,

254
moments of, 100, 104, 155, 254
ratios, 157
secular coefficient, 162

class group
analogy with X, 324
heuristics, 323

class number, 204
class number formula, 262
CM, see complex multiplication
CM curves

are modular, 20
Cohen-Lenstra heuristics, 323
complex multiplication, 13
conductor, 18

and rank, 26
of an L-function, 56

congruent number, 9, 15–17, 20, 35,
341

conjugate
of a quaternion, 274

constant field, see field of constants
critical value

computing, 260
cubic twist, 237
curve

over a finite field, 112
zeta function of, 124

cusp form, 19

decomposition group, 122
degree

of a divisor, 118
of an L-function, 56
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of characteristic polynomial, 55
Delta symbol, 42, 47, 48
Dirichlet series, 19, 55
Dirichlet’s class number formula, 262
discretization, 95, 202, 252
discretization formula, 94
discriminant, 9

∆, 9
of a quaternion, 291
of an elliptic curve, 9

division algebra, 274
divisor

canonical, 120
degree of, 118
effective, 118
is rational, 118
of f , 120
on a curve, 118
prime, 118
support of, 118

Dueñez model, see interaction model

E[n], n-torsion points of E, 13
elliptic curve, 8

2-descent, 345
analogy with number field, 324
and lattices in C, 9
as a complex torus, 9
as a nonsingular cubic, 8
complex multiplication, 13
conductor, 18
discriminant, 9
endomorphism ring, 12
family, 27, 75
group law, 11
isogeny, 12
j-invariant, 13
L-function, 18, 19, 215
modularity of, 19
morphism, 11
must be non-singular, 9
over a function field, 128
over a number field, 247
point at infinity, 8
possible torsion groups, 15

quadratic twist, 171, 195
rank, 14
regulator, 21
twist, 13
Weierstrass form, 8

elliptic functions, 10
elliptic regulator, 21
End(E), 12
endomorphism ring, 12
Euler product, 19, 56
excess rank, 46
explicit formula, 72

family
of L-functions, 33, 57

arithmetic, 132
geometric, 132

of a given rank, 60
of characters, 56
of elliptic curves, 27, 60, 75
random matrix model, 58, 59

field
of constants, 110

finite field, 110
first descent, 346
Fricke involution, 19, 261, 273, 361
Frobenius element, 122
Frobenius map, 110
Frobenius-Schur duality, 152
fudge factors, 233, 260, see Tama-

gawa numbers
function field

over a finite field, 110
functional equation, 19, 56, 261

function field L-function, 127
of characteristic polynomial, 58
sign, wE, 19
twisted, 215, 250

fundamental discriminant, 192, 216

Gauss sum, 250
generalized theta series, 279
group law, 11

Hamilton quaternions, 275
Hasse bound, 17, 72
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Hasse principle, 23
Hasse-Weil L-function, 18
Hecke operator, 19, 267, 268, 276,

290
Hecke relations, 85, 238
Heegner point, 203

as an embedding of quaternions,
264

of discriminant D, 264
height, 205

canonical, 21
of the generators, 64, 203
pairing, 276, 290

Heine-Szegö formula, 155
Hilbert class field, 204
Hilbert symbol, 347

of a quaternion algebra, 274

independent model, 63, 205
inertia group, 122
interaction model, 63, 204
isogeny, 12
isomorphism of curves, 114

J0(q), jacobian of X0(q), 29
j-invariant, 13
Jacobi-Trudi identity, 155

Kohnen subspace, 268
Kronecker symbol, 32, 96
Kummer map, 347

L-function, 55
attached to Galois representa-

tion, 129
conjectured moment, 217, 219
cubic, 134
Dirichlet series, 19
Euler product, 19
examples over function fields, 127
functional equation, 19
of an elliptic curve, 18, 19, 215
spectral interpretation, 130
twisted, 215, 273

λE(p), also called ap, 72
Legendre symbol, 17

�, 7
little-o, 7
lowest zero, 65

magic squares, 164
Miller model, see independent model
Möbius function, 20
modular symbol, 250
modularity

of a CM curve, 20
of an elliptic curve, 19

mollifier, 84
monodromy group, 45, 136, 138
Mordell’s theorem, 14
Mordell-Weil group, 14, 20, 21, 26,

30, 97, 205, 346
analogy with unit group, 324

morphism
of elliptic curves, 11

morphism of curves, 113
multiplicative reduction, 18

näıve height, 21
Neumann-Setzer curves, 210
non-split reduction, 18
norm

of a quaternion, 274, 290

O(), 7
o(), 7
Ω, real period, 21
one-level density, 61

for restricted matrices, 63
order

in a quaternion algebra, 290

℘-function, 10
p-Selmer group, 30, 325
parity conjecture, 30, 37, 171, 177
place of Q, 274
plane partition, 161
Poincaré duality, 126
point at infinity, 8
prime divisor, 118

quadratic twist, 19, 171, 195
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in an arithmetic progression, 208
random matrix prediction, 33
rank at least four, 177
secondary terms, 215

quaternion, 274, 290
conjugate of, 274
discriminant of, 291
norm of, 274
order in, 290
trace of, 274

quaternion algebra, 274

R, regulator, 21
relation to X, 203

ramification index, 121
rank, 14

analytic, 30
and conductor, 26
bounding average, 72

Rankin-Selberg convolution, 57
rational divisor, 118
rational function

on a curve, 115
ratios

of characteristic polynomials, 157
real period, 21
reduced (quadratic) form, 263
reduced norm, 290
regulator, 21
repulsion, 65, 137
residue degree, 121
Riemann hypothesis

for E mod p, 17
for a curve, 125

Riemann-Hurwitz formula, 132
Riemann-Roch theorem, 120
root number, 30, see sign of the

functional equation, 185

Saturday night conjecture, 211
Schur function, 149

combinatorial definition, 160
second descent, 351
secular coefficient, 162

Selmer group, 23, 25, 30, 35, 46,
339, 341, 346

separable field, 111
X, 22

2-part, 341
analogy with class group, 324
and 2-Selmer group, 346
and local-global principle, 324
Cassels pairing, 24, 325
cohomological definition, 25
conjectured to be finite, 24
heuristics, 323
primes dividing, 240
relation to regulator, 203

Shimura correspondence, 266, 269,
273, 289–291, 315, 320

sign
of the functional equation, 19

Snaith model, see interaction model
SO(N), 33, 58, 61, 94, 97, 205
Sp(N), 58, 157

Haar measure, 158
special value, 30
spherical polynomials, 315
split reduction, 18
support of a divisor, 118
symplectic matrix, 157

Tamagawa number, 21
and quadratic twists, 189
Tate’s algorithm for, 233

Tate’s algorithm, 233
Tate-Shafarevich group, see X, 22,

71, 80, 104, 105, 198, 262
annoyed by, 332
cohomological definition, 25

torsion group
15 possibilities, 15

trace
of a quaternion, 274

twist, 13
and conductor, 19
by fundamental discriminants,

189
cubic, 237, 243, 249
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higher order, 243, 249
order 5, 249
quadratic, 19, 171, 195, 201

U(N), 58, 144, 254
characters of, 150
Haar measure, 145

Vandermonde, 151, 217
vanishing of quadratic twists

effect of 2-torsion, 189
power of logarithm, 189
random matrix prediction, 189
role of Tamagawa numbers, 189

wE, sign of the functional equation,
19

wN , the Fricke involution, 261
Waldspurger formula, 269, 289, 315
Weierstrass equation, 8
Weierstrass ℘-function, 10
Weyl character formula, 158
Weyl integration formula, 144

X0(27), 237
table of data for twists, 246

X0(32)
table of data for twists, 246

X ι
0(32), 241

x3+y3 = 13293998056584952174157235
has rank at least 11, 237

x3 + y3 = m, 237

y2 + 17xy − 120y = x3 − 60x2, 15
y2 + 43xy − 210y = x3 − 210x2, 15
y2 + 5xy − 6y = x3 − 3x2, 15
y2 + 7xy = x3 + 16x, 15
y2 + xy + y = x3 − x2 − x− 14

has conductor N = 17, 196
quadratic twists of, 196

y2 +xy+ y = x3−x2− 14x+ 29, 15
y2 + xy − 5y = x3 − 5x2, 15
y2 + xy = x3 − 45x+ 81, 15
y2 + y = x3 + x2 + x, 173
y2 + y = x3 − x

has conductor 11, 19

y2 + y = x3 − x− 9, 231
y2 + y = x3 − x2

has discriminant ∆ = 11, 17
y2 + y = x3 − x2 − 10x − 20, 230,

235
y2 − xy − 4y = x3 − x2, 15
y2 − y = x3 − x, 15
y2 = x3 + 1, 15
y2 = x3 + 4, 15
y2 = x3 + 4x, 15
y2 = x3 + 8, 15
y2 = x3 − 1

quadratic twists, 207
y2 = x3 − 2, 15
y2 = x3 − 24300, 25
y2 = x3 − 432m2, 237
y2 = x3 − 4x, 15
y2 = x3 − 4x2 − 160x− 1264, 235
y2 = x3 − d2x, 35
y2 = x3 −m2x, 241
y2 = x3 − x, 20, 173, 234, 241

has complex multiplication, 13
has discriminant ∆ = 64, 17
twists of, 13

Young diagram
conjugate, 149
of a partition, 149

Zagier and Kramarz, 237
Zariski closed set, 112
zeta function

of a curve, 124
spectral interpretation, 126
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